Evaluate
2\sqrt{2}\approx 2.828427125
Share
Copied to clipboard
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{\sqrt{15}-\sqrt{10}-\sqrt{6}+2}{\sqrt{3}-\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}-\frac{\sqrt{15}-\sqrt{10}-\sqrt{6}+2}{\sqrt{3}-\sqrt{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{3-1}-\frac{\sqrt{15}-\sqrt{10}-\sqrt{6}+2}{\sqrt{3}-\sqrt{2}}
Square \sqrt{3}. Square 1.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\frac{\sqrt{15}-\sqrt{10}-\sqrt{6}+2}{\sqrt{3}-\sqrt{2}}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\frac{\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{15}-\sqrt{10}-\sqrt{6}+2}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\frac{\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\frac{\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\frac{\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\frac{\left(\sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Anything divided by one gives itself.
\frac{\sqrt{15}\sqrt{3}-\sqrt{15}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{5}\sqrt{3}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Apply the distributive property by multiplying each term of \sqrt{15}+\sqrt{6}+\sqrt{5}+\sqrt{2} by each term of \sqrt{3}-1.
\frac{\sqrt{3}\sqrt{5}\sqrt{3}-\sqrt{15}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{5}\sqrt{3}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}-\sqrt{15}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{5}\sqrt{3}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{5}-\sqrt{15}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{5}\sqrt{3}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\sqrt{5}-\sqrt{15}+3\sqrt{2}-\sqrt{6}+\sqrt{5}\sqrt{3}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{5}-\sqrt{15}+3\sqrt{2}-\sqrt{6}+\sqrt{15}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{5}+3\sqrt{2}-\sqrt{6}-\sqrt{5}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Combine -\sqrt{15} and \sqrt{15} to get 0.
\frac{2\sqrt{5}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Combine 3\sqrt{5} and -\sqrt{5} to get 2\sqrt{5}.
\frac{2\sqrt{5}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{5}+3\sqrt{2}-\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Combine -\sqrt{6} and \sqrt{6} to get 0.
\frac{2\sqrt{5}+2\sqrt{2}}{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{15}-\sqrt{10}-\sqrt{6}+2\right)\left(\sqrt{3}+\sqrt{2}\right)
Divide each term of 2\sqrt{5}+2\sqrt{2} by 2 to get \sqrt{5}+\sqrt{2}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{15}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{10}\sqrt{3}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Apply the distributive property by multiplying each term of \sqrt{15}-\sqrt{10}-\sqrt{6}+2 by each term of \sqrt{3}+\sqrt{2}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{3}\sqrt{5}\sqrt{3}+\sqrt{15}\sqrt{2}-\sqrt{10}\sqrt{3}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}+\sqrt{15}\sqrt{2}-\sqrt{10}\sqrt{3}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}+\sqrt{30}-\sqrt{10}\sqrt{3}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}+\sqrt{30}-\sqrt{30}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}-\sqrt{10}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Combine \sqrt{30} and -\sqrt{30} to get 0.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}-\sqrt{2}\sqrt{5}\sqrt{2}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
\sqrt{5}+\sqrt{2}-\left(3\sqrt{5}-2\sqrt{5}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Combine 3\sqrt{5} and -2\sqrt{5} to get \sqrt{5}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-3\sqrt{2}-\sqrt{6}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Multiply \sqrt{3} and \sqrt{3} to get 3.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-3\sqrt{2}-\sqrt{2}\sqrt{3}\sqrt{2}+2\sqrt{3}+2\sqrt{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-3\sqrt{2}-2\sqrt{3}+2\sqrt{3}+2\sqrt{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-3\sqrt{2}+2\sqrt{2}\right)
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)
Combine -3\sqrt{2} and 2\sqrt{2} to get -\sqrt{2}.
\sqrt{5}+\sqrt{2}-\sqrt{5}-\left(-\sqrt{2}\right)
To find the opposite of \sqrt{5}-\sqrt{2}, find the opposite of each term.
\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}
The opposite of -\sqrt{2} is \sqrt{2}.
\sqrt{2}+\sqrt{2}
Combine \sqrt{5} and -\sqrt{5} to get 0.
2\sqrt{2}
Combine \sqrt{2} and \sqrt{2} to get 2\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}