Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-2\sqrt{2}
Rationalize the denominator of \frac{\sqrt{14}+\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7}-2\sqrt{2}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7}+\frac{7\left(-2\right)\sqrt{2}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{7}{7}.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\left(-2\right)\sqrt{2}}{7}
Since \frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7} and \frac{7\left(-2\right)\sqrt{2}}{7} have the same denominator, add them by adding their numerators.
\frac{7\sqrt{2}+7-14\sqrt{2}}{7}
Do the multiplications in \left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\left(-2\right)\sqrt{2}.
\frac{-7\sqrt{2}+7}{7}
Do the calculations in 7\sqrt{2}+7-14\sqrt{2}.
-\sqrt{2}+1
Divide each term of -7\sqrt{2}+7 by 7 to get -\sqrt{2}+1.