Evaluate
1-\sqrt{2}\approx -0.414213562
Share
Copied to clipboard
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}-2\sqrt{2}
Rationalize the denominator of \frac{\sqrt{14}+\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7}-2\sqrt{2}
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7}+\frac{7\left(-2\right)\sqrt{2}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2\sqrt{2} times \frac{7}{7}.
\frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\left(-2\right)\sqrt{2}}{7}
Since \frac{\left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}}{7} and \frac{7\left(-2\right)\sqrt{2}}{7} have the same denominator, add them by adding their numerators.
\frac{7\sqrt{2}+7-14\sqrt{2}}{7}
Do the multiplications in \left(\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\left(-2\right)\sqrt{2}.
\frac{-7\sqrt{2}+7}{7}
Do the calculations in 7\sqrt{2}+7-14\sqrt{2}.
-\sqrt{2}+1
Divide each term of -7\sqrt{2}+7 by 7 to get -\sqrt{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}