Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{13}\left(13-\sqrt{13}\right)}{\left(13+\sqrt{13}\right)\left(13-\sqrt{13}\right)}
Rationalize the denominator of \frac{\sqrt{13}}{13+\sqrt{13}} by multiplying numerator and denominator by 13-\sqrt{13}.
\frac{\sqrt{13}\left(13-\sqrt{13}\right)}{13^{2}-\left(\sqrt{13}\right)^{2}}
Consider \left(13+\sqrt{13}\right)\left(13-\sqrt{13}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{13}\left(13-\sqrt{13}\right)}{169-13}
Square 13. Square \sqrt{13}.
\frac{\sqrt{13}\left(13-\sqrt{13}\right)}{156}
Subtract 13 from 169 to get 156.
\frac{13\sqrt{13}-\left(\sqrt{13}\right)^{2}}{156}
Use the distributive property to multiply \sqrt{13} by 13-\sqrt{13}.
\frac{13\sqrt{13}-13}{156}
The square of \sqrt{13} is 13.