Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{5}-\sqrt{20}+5\sqrt{45}}{\sqrt{3}}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{5\sqrt{5}-2\sqrt{5}+5\sqrt{45}}{\sqrt{3}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{3\sqrt{5}+5\sqrt{45}}{\sqrt{3}}
Combine 5\sqrt{5} and -2\sqrt{5} to get 3\sqrt{5}.
\frac{3\sqrt{5}+5\times 3\sqrt{5}}{\sqrt{3}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{3\sqrt{5}+15\sqrt{5}}{\sqrt{3}}
Multiply 5 and 3 to get 15.
\frac{18\sqrt{5}}{\sqrt{3}}
Combine 3\sqrt{5} and 15\sqrt{5} to get 18\sqrt{5}.
\frac{18\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{18\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{18\sqrt{5}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{18\sqrt{15}}{3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
6\sqrt{15}
Divide 18\sqrt{15} by 3 to get 6\sqrt{15}.