Evaluate
\sqrt{2}+2\approx 3.414213562
Share
Copied to clipboard
\frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{2\sqrt{3}+\sqrt{6}+\sqrt{2}+2}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\left(2\sqrt{3}+\sqrt{6}+\sqrt{2}+2\right)\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{2\left(\sqrt{3}\right)^{2}-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Apply the distributive property by multiplying each term of 2\sqrt{3}+\sqrt{6}+\sqrt{2}+2 by each term of \sqrt{3}-1.
\frac{2\times 3-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
The square of \sqrt{3} is 3.
\frac{6-2\sqrt{3}+\sqrt{6}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Multiply 2 and 3 to get 6.
\frac{6-2\sqrt{3}+\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{2}\sqrt{3}-\sqrt{2}+2\sqrt{3}-2}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{2}+2\sqrt{3}-2}{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{6-2\sqrt{3}+3\sqrt{2}-\sqrt{2}+2\sqrt{3}-2}{2}
Combine -\sqrt{6} and \sqrt{6} to get 0.
\frac{6-2\sqrt{3}+2\sqrt{2}+2\sqrt{3}-2}{2}
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\frac{6+2\sqrt{2}-2}{2}
Combine -2\sqrt{3} and 2\sqrt{3} to get 0.
\frac{4+2\sqrt{2}}{2}
Subtract 2 from 6 to get 4.
2+\sqrt{2}
Divide each term of 4+2\sqrt{2} by 2 to get 2+\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}