Factor
\frac{\sqrt{x}\left(-\sqrt{7}\sqrt{x}+2\sqrt{11}\right)}{142}
Evaluate
-\frac{\sqrt{7x^{2}}}{142}+\frac{\sqrt{11x}}{71}
Graph
Share
Copied to clipboard
factor(\frac{\sqrt{11x}-x\times \frac{7\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}}{71})
Rationalize the denominator of \frac{7}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
factor(\frac{\sqrt{11x}-x\times \frac{7\sqrt{7}}{2\times 7}}{71})
The square of \sqrt{7} is 7.
factor(\frac{\sqrt{11x}-x\times \frac{\sqrt{7}}{2}}{71})
Cancel out 7 in both numerator and denominator.
factor(\frac{\sqrt{11x}-\frac{x\sqrt{7}}{2}}{71})
Express x\times \frac{\sqrt{7}}{2} as a single fraction.
\frac{2\sqrt{11}\sqrt{x}-x\sqrt{7}}{2}
Consider \left(11x\right)^{\frac{1}{2}}-\frac{1}{2}x\times 7^{\frac{1}{2}}. Factor out \frac{1}{2}.
\sqrt{x}\left(2\sqrt{11}-\sqrt{x}\sqrt{7}\right)
Consider 2\sqrt{11}\sqrt{x}-x\sqrt{7}. Factor out \sqrt{x}.
\frac{\left(2\sqrt{11}-\sqrt{x}\sqrt{7}\right)\sqrt{x}}{142}
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}