Evaluate
4\sqrt{6}\approx 9.797958971
Share
Copied to clipboard
\frac{6\sqrt{3}\sqrt{600}}{\sqrt{675}}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{6\sqrt{3}\times 10\sqrt{6}}{\sqrt{675}}
Factor 600=10^{2}\times 6. Rewrite the square root of the product \sqrt{10^{2}\times 6} as the product of square roots \sqrt{10^{2}}\sqrt{6}. Take the square root of 10^{2}.
\frac{60\sqrt{3}\sqrt{6}}{\sqrt{675}}
Multiply 6 and 10 to get 60.
\frac{60\sqrt{3}\sqrt{3}\sqrt{2}}{\sqrt{675}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{60\times 3\sqrt{2}}{\sqrt{675}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{60\times 3\sqrt{2}}{15\sqrt{3}}
Factor 675=15^{2}\times 3. Rewrite the square root of the product \sqrt{15^{2}\times 3} as the product of square roots \sqrt{15^{2}}\sqrt{3}. Take the square root of 15^{2}.
\frac{3\times 4\sqrt{2}}{\sqrt{3}}
Cancel out 15 in both numerator and denominator.
\frac{3\times 4\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{3\times 4\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\times 4\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{12\sqrt{2}\sqrt{3}}{3}
Multiply 3 and 4 to get 12.
\frac{12\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{6}
Divide 12\sqrt{6} by 3 to get 4\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}