Evaluate
\frac{10\sqrt{91}}{91}\approx 1.048284837
Share
Copied to clipboard
\frac{10\sqrt{10}}{\sqrt{910}}
Factor 1000=10^{2}\times 10. Rewrite the square root of the product \sqrt{10^{2}\times 10} as the product of square roots \sqrt{10^{2}}\sqrt{10}. Take the square root of 10^{2}.
\frac{10\sqrt{10}\sqrt{910}}{\left(\sqrt{910}\right)^{2}}
Rationalize the denominator of \frac{10\sqrt{10}}{\sqrt{910}} by multiplying numerator and denominator by \sqrt{910}.
\frac{10\sqrt{10}\sqrt{910}}{910}
The square of \sqrt{910} is 910.
\frac{10\sqrt{10}\sqrt{10}\sqrt{91}}{910}
Factor 910=10\times 91. Rewrite the square root of the product \sqrt{10\times 91} as the product of square roots \sqrt{10}\sqrt{91}.
\frac{10\times 10\sqrt{91}}{910}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{100\sqrt{91}}{910}
Multiply 10 and 10 to get 100.
\frac{10}{91}\sqrt{91}
Divide 100\sqrt{91} by 910 to get \frac{10}{91}\sqrt{91}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}