Evaluate
\frac{\sqrt{2}x+1}{3}
Differentiate w.r.t. x
\frac{\sqrt{2}}{3} = 0.47140452079103173
Graph
Share
Copied to clipboard
\frac{\sqrt{10}\left(2x^{3}-x\right)}{\left(2x^{2}-\sqrt{2}x\right)\times 3\sqrt{5}}
Divide \frac{\sqrt{10}}{2x^{2}-\sqrt{2}x} by \frac{3\sqrt{5}}{2x^{3}-x} by multiplying \frac{\sqrt{10}}{2x^{2}-\sqrt{2}x} by the reciprocal of \frac{3\sqrt{5}}{2x^{3}-x}.
\frac{\sqrt{10}x\left(2x^{2}-1\right)}{3\sqrt{2}\sqrt{5}x\left(\sqrt{2}x-1\right)}
Factor the expressions that are not already factored.
\frac{\sqrt{10}\left(2x^{2}-1\right)}{3\sqrt{2}\sqrt{5}\left(\sqrt{2}x-1\right)}
Cancel out x in both numerator and denominator.
\frac{2\sqrt{10}x^{2}-\sqrt{10}}{6\sqrt{5}x-3\sqrt{10}}
Expand the expression.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{\left(6\sqrt{5}x-3\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}
Rationalize the denominator of \frac{2\sqrt{10}x^{2}-\sqrt{10}}{6\sqrt{5}x-3\sqrt{10}} by multiplying numerator and denominator by 6\sqrt{5}x+3\sqrt{10}.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{\left(6\sqrt{5}x\right)^{2}-\left(-3\sqrt{10}\right)^{2}}
Consider \left(6\sqrt{5}x-3\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{6^{2}\left(\sqrt{5}\right)^{2}x^{2}-\left(-3\sqrt{10}\right)^{2}}
Expand \left(6\sqrt{5}x\right)^{2}.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{36\left(\sqrt{5}\right)^{2}x^{2}-\left(-3\sqrt{10}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{36\times 5x^{2}-\left(-3\sqrt{10}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{180x^{2}-\left(-3\sqrt{10}\right)^{2}}
Multiply 36 and 5 to get 180.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{180x^{2}-\left(-3\right)^{2}\left(\sqrt{10}\right)^{2}}
Expand \left(-3\sqrt{10}\right)^{2}.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{180x^{2}-9\left(\sqrt{10}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{180x^{2}-9\times 10}
The square of \sqrt{10} is 10.
\frac{\left(2\sqrt{10}x^{2}-\sqrt{10}\right)\left(6\sqrt{5}x+3\sqrt{10}\right)}{180x^{2}-90}
Multiply 9 and 10 to get 90.
\frac{3\sqrt{10}\left(2\sqrt{5}x+\sqrt{10}\right)\left(2x^{2}-1\right)}{90\left(2x^{2}-1\right)}
Factor the expressions that are not already factored.
\frac{\sqrt{10}\left(2\sqrt{5}x+\sqrt{10}\right)}{30}
Cancel out 3\left(2x^{2}-1\right) in both numerator and denominator.
\frac{10\sqrt{2}x+10}{30}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}