Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}
Rationalize the denominator of \frac{\sqrt{10}+\sqrt{2}+\sqrt{3}}{\sqrt{7}-2} by multiplying numerator and denominator by \sqrt{7}+2.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+2\right)}{\left(\sqrt{7}\right)^{2}-2^{2}}
Consider \left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+2\right)}{7-4}
Square \sqrt{7}. Square 2.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+2\right)}{3}
Subtract 4 from 7 to get 3.
\frac{\sqrt{10}\sqrt{7}+2\sqrt{10}+\sqrt{2}\sqrt{7}+2\sqrt{2}+\sqrt{3}\sqrt{7}+2\sqrt{3}}{3}
Apply the distributive property by multiplying each term of \sqrt{10}+\sqrt{2}+\sqrt{3} by each term of \sqrt{7}+2.
\frac{\sqrt{70}+2\sqrt{10}+\sqrt{2}\sqrt{7}+2\sqrt{2}+\sqrt{3}\sqrt{7}+2\sqrt{3}}{3}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{70}+2\sqrt{10}+\sqrt{14}+2\sqrt{2}+\sqrt{3}\sqrt{7}+2\sqrt{3}}{3}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{70}+2\sqrt{10}+\sqrt{14}+2\sqrt{2}+\sqrt{21}+2\sqrt{3}}{3}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.