Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}
Rationalize the denominator of \frac{\sqrt{10}+\sqrt{2}+\sqrt{3}}{\sqrt{7}-1} by multiplying numerator and denominator by \sqrt{7}+1.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}
Consider \left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+1\right)}{7-1}
Square \sqrt{7}. Square 1.
\frac{\left(\sqrt{10}+\sqrt{2}+\sqrt{3}\right)\left(\sqrt{7}+1\right)}{6}
Subtract 1 from 7 to get 6.
\frac{\sqrt{10}\sqrt{7}+\sqrt{10}+\sqrt{2}\sqrt{7}+\sqrt{2}+\sqrt{3}\sqrt{7}+\sqrt{3}}{6}
Apply the distributive property by multiplying each term of \sqrt{10}+\sqrt{2}+\sqrt{3} by each term of \sqrt{7}+1.
\frac{\sqrt{70}+\sqrt{10}+\sqrt{2}\sqrt{7}+\sqrt{2}+\sqrt{3}\sqrt{7}+\sqrt{3}}{6}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{70}+\sqrt{10}+\sqrt{14}+\sqrt{2}+\sqrt{3}\sqrt{7}+\sqrt{3}}{6}
To multiply \sqrt{2} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{70}+\sqrt{10}+\sqrt{14}+\sqrt{2}+\sqrt{21}+\sqrt{3}}{6}
To multiply \sqrt{3} and \sqrt{7}, multiply the numbers under the square root.