Skip to main content
Evaluate (complex solution)
Tick mark Image
Real Part (complex solution)
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4i\sqrt{3}+\sqrt{-75}-\sqrt{-147}}{\sqrt{-12}}
Factor -48=\left(4i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(4i\right)^{2}\times 3} as the product of square roots \sqrt{\left(4i\right)^{2}}\sqrt{3}. Take the square root of \left(4i\right)^{2}.
\frac{4i\sqrt{3}+5i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}}
Factor -75=\left(5i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 3} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{3}. Take the square root of \left(5i\right)^{2}.
\frac{9i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}}
Combine 4i\sqrt{3} and 5i\sqrt{3} to get 9i\sqrt{3}.
\frac{9i\sqrt{3}-7i\sqrt{3}}{\sqrt{-12}}
Factor -147=\left(7i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(7i\right)^{2}\times 3} as the product of square roots \sqrt{\left(7i\right)^{2}}\sqrt{3}. Take the square root of \left(7i\right)^{2}.
\frac{2i\sqrt{3}}{\sqrt{-12}}
Combine 9i\sqrt{3} and -7i\sqrt{3} to get 2i\sqrt{3}.
\frac{2i\sqrt{3}}{2i\sqrt{3}}
Factor -12=\left(2i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 3} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{3}. Take the square root of \left(2i\right)^{2}.
\frac{2i}{2i}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{1}{\left(2i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{1}
Calculate 2i to the power of 0 and get 1.
1
Anything divided by one gives itself.
Re(\frac{4i\sqrt{3}+\sqrt{-75}-\sqrt{-147}}{\sqrt{-12}})
Factor -48=\left(4i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(4i\right)^{2}\times 3} as the product of square roots \sqrt{\left(4i\right)^{2}}\sqrt{3}. Take the square root of \left(4i\right)^{2}.
Re(\frac{4i\sqrt{3}+5i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}})
Factor -75=\left(5i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 3} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{3}. Take the square root of \left(5i\right)^{2}.
Re(\frac{9i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}})
Combine 4i\sqrt{3} and 5i\sqrt{3} to get 9i\sqrt{3}.
Re(\frac{9i\sqrt{3}-7i\sqrt{3}}{\sqrt{-12}})
Factor -147=\left(7i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(7i\right)^{2}\times 3} as the product of square roots \sqrt{\left(7i\right)^{2}}\sqrt{3}. Take the square root of \left(7i\right)^{2}.
Re(\frac{2i\sqrt{3}}{\sqrt{-12}})
Combine 9i\sqrt{3} and -7i\sqrt{3} to get 2i\sqrt{3}.
Re(\frac{2i\sqrt{3}}{2i\sqrt{3}})
Factor -12=\left(2i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 3} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{3}. Take the square root of \left(2i\right)^{2}.
Re(\frac{2i}{2i})
Cancel out \sqrt{3} in both numerator and denominator.
Re(\frac{1}{\left(2i\right)^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{1}{1})
Calculate 2i to the power of 0 and get 1.
Re(1)
Anything divided by one gives itself.
1
The real part of 1 is 1.