Evaluate (complex solution)
1
Real Part (complex solution)
1
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{4i\sqrt{3}+\sqrt{-75}-\sqrt{-147}}{\sqrt{-12}}
Factor -48=\left(4i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(4i\right)^{2}\times 3} as the product of square roots \sqrt{\left(4i\right)^{2}}\sqrt{3}. Take the square root of \left(4i\right)^{2}.
\frac{4i\sqrt{3}+5i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}}
Factor -75=\left(5i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 3} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{3}. Take the square root of \left(5i\right)^{2}.
\frac{9i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}}
Combine 4i\sqrt{3} and 5i\sqrt{3} to get 9i\sqrt{3}.
\frac{9i\sqrt{3}-7i\sqrt{3}}{\sqrt{-12}}
Factor -147=\left(7i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(7i\right)^{2}\times 3} as the product of square roots \sqrt{\left(7i\right)^{2}}\sqrt{3}. Take the square root of \left(7i\right)^{2}.
\frac{2i\sqrt{3}}{\sqrt{-12}}
Combine 9i\sqrt{3} and -7i\sqrt{3} to get 2i\sqrt{3}.
\frac{2i\sqrt{3}}{2i\sqrt{3}}
Factor -12=\left(2i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 3} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{3}. Take the square root of \left(2i\right)^{2}.
\frac{2i}{2i}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{1}{\left(2i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{1}
Calculate 2i to the power of 0 and get 1.
1
Anything divided by one gives itself.
Re(\frac{4i\sqrt{3}+\sqrt{-75}-\sqrt{-147}}{\sqrt{-12}})
Factor -48=\left(4i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(4i\right)^{2}\times 3} as the product of square roots \sqrt{\left(4i\right)^{2}}\sqrt{3}. Take the square root of \left(4i\right)^{2}.
Re(\frac{4i\sqrt{3}+5i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}})
Factor -75=\left(5i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 3} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{3}. Take the square root of \left(5i\right)^{2}.
Re(\frac{9i\sqrt{3}-\sqrt{-147}}{\sqrt{-12}})
Combine 4i\sqrt{3} and 5i\sqrt{3} to get 9i\sqrt{3}.
Re(\frac{9i\sqrt{3}-7i\sqrt{3}}{\sqrt{-12}})
Factor -147=\left(7i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(7i\right)^{2}\times 3} as the product of square roots \sqrt{\left(7i\right)^{2}}\sqrt{3}. Take the square root of \left(7i\right)^{2}.
Re(\frac{2i\sqrt{3}}{\sqrt{-12}})
Combine 9i\sqrt{3} and -7i\sqrt{3} to get 2i\sqrt{3}.
Re(\frac{2i\sqrt{3}}{2i\sqrt{3}})
Factor -12=\left(2i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(2i\right)^{2}\times 3} as the product of square roots \sqrt{\left(2i\right)^{2}}\sqrt{3}. Take the square root of \left(2i\right)^{2}.
Re(\frac{2i}{2i})
Cancel out \sqrt{3} in both numerator and denominator.
Re(\frac{1}{\left(2i\right)^{0}})
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Re(\frac{1}{1})
Calculate 2i to the power of 0 and get 1.
Re(1)
Anything divided by one gives itself.
1
The real part of 1 is 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}