Evaluate (complex solution)
\frac{6i}{\sqrt{2}ir-9}
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{6i}{\sqrt{-2}r-9}
Calculate the square root of -36 and get 6i.
\frac{6i}{\sqrt{2}ir-9}
Factor -2=2\left(-1\right). Rewrite the square root of the product \sqrt{2\left(-1\right)} as the product of square roots \sqrt{2}\sqrt{-1}. By definition, the square root of -1 is i.
\frac{6i\left(\sqrt{2}ir+9\right)}{\left(\sqrt{2}ir-9\right)\left(\sqrt{2}ir+9\right)}
Rationalize the denominator of \frac{6i}{\sqrt{2}ir-9} by multiplying numerator and denominator by \sqrt{2}ir+9.
\frac{6i\left(\sqrt{2}ir+9\right)}{\left(\sqrt{2}ir\right)^{2}-9^{2}}
Consider \left(\sqrt{2}ir-9\right)\left(\sqrt{2}ir+9\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6i\left(\sqrt{2}ir+9\right)}{\left(\sqrt{2}\right)^{2}i^{2}r^{2}-9^{2}}
Expand \left(\sqrt{2}ir\right)^{2}.
\frac{6i\left(\sqrt{2}ir+9\right)}{2i^{2}r^{2}-9^{2}}
The square of \sqrt{2} is 2.
\frac{6i\left(\sqrt{2}ir+9\right)}{2\left(-1\right)r^{2}-9^{2}}
Calculate i to the power of 2 and get -1.
\frac{6i\left(\sqrt{2}ir+9\right)}{-2r^{2}-9^{2}}
Multiply 2 and -1 to get -2.
\frac{6i\left(\sqrt{2}ir+9\right)}{-2r^{2}-81}
Calculate 9 to the power of 2 and get 81.
\frac{6i\sqrt{2}ir+54i}{-2r^{2}-81}
Use the distributive property to multiply 6i by \sqrt{2}ir+9.
\frac{-6\sqrt{2}r+54i}{-2r^{2}-81}
Multiply 6i and i to get -6.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}r-9\right)\left(\sqrt{-2}r+9\right)}
Rationalize the denominator of \frac{\sqrt{-36}}{\sqrt{-2}r-9} by multiplying numerator and denominator by \sqrt{-2}r+9.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}r\right)^{2}-9^{2}}
Consider \left(\sqrt{-2}r-9\right)\left(\sqrt{-2}r+9\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{\left(\sqrt{-2}\right)^{2}r^{2}-9^{2}}
Expand \left(\sqrt{-2}r\right)^{2}.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{-2r^{2}-9^{2}}
Calculate \sqrt{-2} to the power of 2 and get -2.
\frac{\sqrt{-36}\left(\sqrt{-2}r+9\right)}{-2r^{2}-81}
Calculate 9 to the power of 2 and get 81.
\frac{\sqrt{-36}\sqrt{-2}r+9\sqrt{-36}}{-2r^{2}-81}
Use the distributive property to multiply \sqrt{-36} by \sqrt{-2}r+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}