Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right)}
Rationalize the denominator of \frac{\sqrt{-2}+1}{\sqrt{-2}-1} by multiplying numerator and denominator by \sqrt{-2}+1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}\right)^{2}-1^{2}}
Consider \left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-2-1}
Square \sqrt{-2}. Square 1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-3}
Subtract 1 from -2 to get -3.
\frac{\left(\sqrt{-2}+1\right)^{2}}{-3}
Multiply \sqrt{-2}+1 and \sqrt{-2}+1 to get \left(\sqrt{-2}+1\right)^{2}.
\frac{\left(\sqrt{-2}\right)^{2}+2\sqrt{-2}+1}{-3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{-2}+1\right)^{2}.
\frac{-2+2\sqrt{-2}+1}{-3}
Calculate \sqrt{-2} to the power of 2 and get -2.
\frac{-1+2\sqrt{-2}}{-3}
Add -2 and 1 to get -1.
\frac{1-2\sqrt{-2}}{3}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}