Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right)}
Rationalize the denominator of \frac{\sqrt{-2}+1}{\sqrt{-2}-1} by multiplying numerator and denominator by \sqrt{-2}+1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{\left(\sqrt{-2}\right)^{2}-1^{2}}
Consider \left(\sqrt{-2}-1\right)\left(\sqrt{-2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-2-1}
Square \sqrt{-2}. Square 1.
\frac{\left(\sqrt{-2}+1\right)\left(\sqrt{-2}+1\right)}{-3}
Subtract 1 from -2 to get -3.
\frac{\left(\sqrt{-2}+1\right)^{2}}{-3}
Multiply \sqrt{-2}+1 and \sqrt{-2}+1 to get \left(\sqrt{-2}+1\right)^{2}.
\frac{\left(\sqrt{-2}\right)^{2}+2\sqrt{-2}+1}{-3}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{-2}+1\right)^{2}.
\frac{-2+2\sqrt{-2}+1}{-3}
Calculate \sqrt{-2} to the power of 2 and get -2.
\frac{-1+2\sqrt{-2}}{-3}
Add -2 and 1 to get -1.
\frac{1-2\sqrt{-2}}{3}
Multiply both numerator and denominator by -1.