Evaluate (complex solution)
\frac{\sqrt{6}}{3}\approx 0.816496581
Real Part (complex solution)
\frac{\sqrt{6}}{3} = 0.8164965809277259
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{3i\sqrt{2}}{\sqrt{-27}}
Factor -18=\left(3i\right)^{2}\times 2. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 2} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{2}. Take the square root of \left(3i\right)^{2}.
\frac{3i\sqrt{2}}{3i\sqrt{3}}
Factor -27=\left(3i\right)^{2}\times 3. Rewrite the square root of the product \sqrt{\left(3i\right)^{2}\times 3} as the product of square roots \sqrt{\left(3i\right)^{2}}\sqrt{3}. Take the square root of \left(3i\right)^{2}.
\frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}\times \left(3i\right)^{0}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}\times \left(3i\right)^{0}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3\times \left(3i\right)^{0}}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{3\times \left(3i\right)^{0}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{3\times 1}
Calculate 3i to the power of 0 and get 1.
\frac{\sqrt{6}}{3}
Multiply 3 and 1 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}