Verify
true
Verify (complex solution)
false
Share
Copied to clipboard
\frac{\sqrt{-\frac{3}{4}\left(-12\right)-\left(-7\right)}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{\sqrt{9-\left(-7\right)}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply -\frac{3}{4} and -12 to get 9.
\frac{\sqrt{9+7}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
The opposite of -7 is 7.
\frac{\sqrt{16}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Add 9 and 7 to get 16.
\frac{4+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate the square root of 16 and get 4.
\frac{4+\sqrt[3]{-\frac{125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-125}{8} can be rewritten as -\frac{125}{8} by extracting the negative sign.
\frac{4-\frac{5}{2}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate \sqrt[3]{-\frac{125}{8}} and get -\frac{5}{2}.
\frac{\frac{3}{2}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{5}{2} from 4 to get \frac{3}{2}.
\frac{\frac{3}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\frac{3}{2}}{-\frac{1}{6}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply \frac{1}{3} and -\frac{1}{2} to get -\frac{1}{6}.
\frac{\frac{3}{2}}{-\frac{1}{6}+\frac{5}{6}\left(-1\right)-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate -1 to the power of -5 and get -1.
\frac{\frac{3}{2}}{-\frac{1}{6}-\frac{5}{6}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply \frac{5}{6} and -1 to get -\frac{5}{6}.
\frac{\frac{3}{2}}{-1-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{5}{6} from -\frac{1}{6} to get -1.
\frac{\frac{3}{2}}{-1-\frac{\frac{3}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
\frac{\frac{3}{2}}{-1-\frac{\frac{3}{4}}{-\frac{1}{2}}}=3
Calculate -2 to the power of -1 and get -\frac{1}{2}.
\frac{\frac{3}{2}}{-1-\frac{3}{4}\left(-2\right)}=3
Divide \frac{3}{4} by -\frac{1}{2} by multiplying \frac{3}{4} by the reciprocal of -\frac{1}{2}.
\frac{\frac{3}{2}}{-1-\left(-\frac{3}{2}\right)}=3
Multiply \frac{3}{4} and -2 to get -\frac{3}{2}.
\frac{\frac{3}{2}}{-1+\frac{3}{2}}=3
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{\frac{3}{2}}{\frac{1}{2}}=3
Add -1 and \frac{3}{2} to get \frac{1}{2}.
\frac{3}{2}\times 2=3
Divide \frac{3}{2} by \frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{2}.
3=3
Multiply \frac{3}{2} and 2 to get 3.
\text{true}
Compare 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}