Skip to main content
Verify
true
Tick mark Image
Verify (complex solution)
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{-\frac{3}{4}\left(-12\right)-\left(-7\right)}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
\frac{\sqrt{9-\left(-7\right)}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply -\frac{3}{4} and -12 to get 9.
\frac{\sqrt{9+7}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
The opposite of -7 is 7.
\frac{\sqrt{16}+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Add 9 and 7 to get 16.
\frac{4+\sqrt[3]{\frac{-125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate the square root of 16 and get 4.
\frac{4+\sqrt[3]{-\frac{125}{8}}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-125}{8} can be rewritten as -\frac{125}{8} by extracting the negative sign.
\frac{4-\frac{5}{2}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate \sqrt[3]{-\frac{125}{8}} and get -\frac{5}{2}.
\frac{\frac{3}{2}}{\frac{1}{3}\times \frac{-1}{2}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{5}{2} from 4 to get \frac{3}{2}.
\frac{\frac{3}{2}}{\frac{1}{3}\left(-\frac{1}{2}\right)+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\frac{3}{2}}{-\frac{1}{6}+\frac{5}{6}\left(-1\right)^{-5}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply \frac{1}{3} and -\frac{1}{2} to get -\frac{1}{6}.
\frac{\frac{3}{2}}{-\frac{1}{6}+\frac{5}{6}\left(-1\right)-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Calculate -1 to the power of -5 and get -1.
\frac{\frac{3}{2}}{-\frac{1}{6}-\frac{5}{6}-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Multiply \frac{5}{6} and -1 to get -\frac{5}{6}.
\frac{\frac{3}{2}}{-1-\frac{1-\frac{1}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{5}{6} from -\frac{1}{6} to get -1.
\frac{\frac{3}{2}}{-1-\frac{\frac{3}{4}}{\left(-2\right)^{-1}}}=3
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
\frac{\frac{3}{2}}{-1-\frac{\frac{3}{4}}{-\frac{1}{2}}}=3
Calculate -2 to the power of -1 and get -\frac{1}{2}.
\frac{\frac{3}{2}}{-1-\frac{3}{4}\left(-2\right)}=3
Divide \frac{3}{4} by -\frac{1}{2} by multiplying \frac{3}{4} by the reciprocal of -\frac{1}{2}.
\frac{\frac{3}{2}}{-1-\left(-\frac{3}{2}\right)}=3
Multiply \frac{3}{4} and -2 to get -\frac{3}{2}.
\frac{\frac{3}{2}}{-1+\frac{3}{2}}=3
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{\frac{3}{2}}{\frac{1}{2}}=3
Add -1 and \frac{3}{2} to get \frac{1}{2}.
\frac{3}{2}\times 2=3
Divide \frac{3}{2} by \frac{1}{2} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{2}.
3=3
Multiply \frac{3}{2} and 2 to get 3.
\text{true}
Compare 3 and 3.