Evaluate
\frac{1}{6}\approx 0.166666667
Factor
\frac{1}{2 \cdot 3} = 0.16666666666666666
Share
Copied to clipboard
\frac{\frac{1}{4}\times \frac{2}{5}}{\frac{6}{5}\times \frac{1}{2}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Rewrite the square root of the division \frac{1}{16} as the division of square roots \frac{\sqrt{1}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\frac{\frac{1\times 2}{4\times 5}}{\frac{6}{5}\times \frac{1}{2}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Multiply \frac{1}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2}{20}}{\frac{6}{5}\times \frac{1}{2}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Do the multiplications in the fraction \frac{1\times 2}{4\times 5}.
\frac{\frac{1}{10}}{\frac{6}{5}\times \frac{1}{2}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{10}}{\frac{6\times 1}{5\times 2}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Multiply \frac{6}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{10}}{\frac{6}{10}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Do the multiplications in the fraction \frac{6\times 1}{5\times 2}.
\frac{\frac{1}{10}}{\frac{3}{5}}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{10}\times \frac{5}{3}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Divide \frac{1}{10} by \frac{3}{5} by multiplying \frac{1}{10} by the reciprocal of \frac{3}{5}.
\frac{1\times 5}{10\times 3}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Multiply \frac{1}{10} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{30}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Do the multiplications in the fraction \frac{1\times 5}{10\times 3}.
\frac{1}{6}+\frac{1}{100}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Reduce the fraction \frac{5}{30} to lowest terms by extracting and canceling out 5.
\frac{50}{300}+\frac{3}{300}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Least common multiple of 6 and 100 is 300. Convert \frac{1}{6} and \frac{1}{100} to fractions with denominator 300.
\frac{50+3}{300}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Since \frac{50}{300} and \frac{3}{300} have the same denominator, add them by adding their numerators.
\frac{53}{300}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{1}{2}}+15\times \left(\frac{1}{10}\right)^{3}
Add 50 and 3 to get 53.
\frac{53}{300}-\frac{1}{20}\sqrt{\frac{3}{4}-\frac{2}{4}}+15\times \left(\frac{1}{10}\right)^{3}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{53}{300}-\frac{1}{20}\sqrt{\frac{3-2}{4}}+15\times \left(\frac{1}{10}\right)^{3}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{300}-\frac{1}{20}\sqrt{\frac{1}{4}}+15\times \left(\frac{1}{10}\right)^{3}
Subtract 2 from 3 to get 1.
\frac{53}{300}-\frac{1}{20}\times \frac{1}{2}+15\times \left(\frac{1}{10}\right)^{3}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{53}{300}-\frac{1\times 1}{20\times 2}+15\times \left(\frac{1}{10}\right)^{3}
Multiply \frac{1}{20} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{53}{300}-\frac{1}{40}+15\times \left(\frac{1}{10}\right)^{3}
Do the multiplications in the fraction \frac{1\times 1}{20\times 2}.
\frac{106}{600}-\frac{15}{600}+15\times \left(\frac{1}{10}\right)^{3}
Least common multiple of 300 and 40 is 600. Convert \frac{53}{300} and \frac{1}{40} to fractions with denominator 600.
\frac{106-15}{600}+15\times \left(\frac{1}{10}\right)^{3}
Since \frac{106}{600} and \frac{15}{600} have the same denominator, subtract them by subtracting their numerators.
\frac{91}{600}+15\times \left(\frac{1}{10}\right)^{3}
Subtract 15 from 106 to get 91.
\frac{91}{600}+15\times \frac{1}{1000}
Calculate \frac{1}{10} to the power of 3 and get \frac{1}{1000}.
\frac{91}{600}+\frac{15}{1000}
Multiply 15 and \frac{1}{1000} to get \frac{15}{1000}.
\frac{91}{600}+\frac{3}{200}
Reduce the fraction \frac{15}{1000} to lowest terms by extracting and canceling out 5.
\frac{91}{600}+\frac{9}{600}
Least common multiple of 600 and 200 is 600. Convert \frac{91}{600} and \frac{3}{200} to fractions with denominator 600.
\frac{91+9}{600}
Since \frac{91}{600} and \frac{9}{600} have the same denominator, add them by adding their numerators.
\frac{100}{600}
Add 91 and 9 to get 100.
\frac{1}{6}
Reduce the fraction \frac{100}{600} to lowest terms by extracting and canceling out 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}