Evaluate
\frac{-\sqrt{3}-5}{4}\approx -1.683012702
Share
Copied to clipboard
\frac{\frac{\sqrt{3}}{2}-1}{\tan(60)-2+\tan(45)}-\sqrt{3}\cos(30)
Get the value of \sin(60) from trigonometric values table.
\frac{\frac{\sqrt{3}}{2}-\frac{2}{2}}{\tan(60)-2+\tan(45)}-\sqrt{3}\cos(30)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{\sqrt{3}-2}{2}}{\tan(60)-2+\tan(45)}-\sqrt{3}\cos(30)
Since \frac{\sqrt{3}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\sqrt{3}-2}{2}}{\sqrt{3}-2+\tan(45)}-\sqrt{3}\cos(30)
Get the value of \tan(60) from trigonometric values table.
\frac{\frac{\sqrt{3}-2}{2}}{\sqrt{3}-2+1}-\sqrt{3}\cos(30)
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{\sqrt{3}-2}{2}}{\sqrt{3}-1}-\sqrt{3}\cos(30)
Add -2 and 1 to get -1.
\frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)}-\sqrt{3}\cos(30)
Express \frac{\frac{\sqrt{3}-2}{2}}{\sqrt{3}-1} as a single fraction.
\frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)}-\sqrt{3}\times \frac{\sqrt{3}}{2}
Get the value of \cos(30) from trigonometric values table.
\frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)}-\frac{\sqrt{3}\sqrt{3}}{2}
Express \sqrt{3}\times \frac{\sqrt{3}}{2} as a single fraction.
\frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)}-\frac{3}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)}-\frac{3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(\sqrt{3}-1\right) and 2 is 2\left(\sqrt{3}-1\right). Multiply \frac{3}{2} times \frac{\sqrt{3}-1}{\sqrt{3}-1}.
\frac{\sqrt{3}-2-3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}
Since \frac{\sqrt{3}-2}{2\left(\sqrt{3}-1\right)} and \frac{3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{3}-2-3\sqrt{3}+3}{2\left(\sqrt{3}-1\right)}
Do the multiplications in \sqrt{3}-2-3\left(\sqrt{3}-1\right).
\frac{-2\sqrt{3}+1}{2\left(\sqrt{3}-1\right)}
Do the calculations in \sqrt{3}-2-3\sqrt{3}+3.
\frac{-2\sqrt{3}+1}{2\sqrt{3}-2}
Expand 2\left(\sqrt{3}-1\right).
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}
Rationalize the denominator of \frac{-2\sqrt{3}+1}{2\sqrt{3}-2} by multiplying numerator and denominator by 2\sqrt{3}+2.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{\left(2\sqrt{3}\right)^{2}-2^{2}}
Consider \left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{2^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{4\left(\sqrt{3}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{4\times 3-2^{2}}
The square of \sqrt{3} is 3.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{12-2^{2}}
Multiply 4 and 3 to get 12.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{12-4}
Calculate 2 to the power of 2 and get 4.
\frac{\left(-2\sqrt{3}+1\right)\left(2\sqrt{3}+2\right)}{8}
Subtract 4 from 12 to get 8.
\frac{-4\left(\sqrt{3}\right)^{2}-2\sqrt{3}+2}{8}
Use the distributive property to multiply -2\sqrt{3}+1 by 2\sqrt{3}+2 and combine like terms.
\frac{-4\times 3-2\sqrt{3}+2}{8}
The square of \sqrt{3} is 3.
\frac{-12-2\sqrt{3}+2}{8}
Multiply -4 and 3 to get -12.
\frac{-10-2\sqrt{3}}{8}
Add -12 and 2 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}