Solve for a
a = \frac{50048211032880137}{2673297477628630} = 18\frac{1928856435564796}{2673297477628630} \approx 18.721527047
Share
Copied to clipboard
\frac{0.07149744433268591}{a} = \frac{0.0801989243288589}{21}
Evaluate trigonometric functions in the problem
21\times 0.07149744433268591=a\times 0.0801989243288589
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 21a, the least common multiple of a,21.
1.50144633098640411=a\times 0.0801989243288589
Multiply 21 and 0.07149744433268591 to get 1.50144633098640411.
a\times 0.0801989243288589=1.50144633098640411
Swap sides so that all variable terms are on the left hand side.
a=\frac{1.50144633098640411}{0.0801989243288589}
Divide both sides by 0.0801989243288589.
a=\frac{150144633098640411}{8019892432885890}
Expand \frac{1.50144633098640411}{0.0801989243288589} by multiplying both numerator and the denominator by 100000000000000000.
a=\frac{50048211032880137}{2673297477628630}
Reduce the fraction \frac{150144633098640411}{8019892432885890} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}