Solve for a
a = \frac{50474726398892048}{1992389396183491} = 25\frac{664991494304773}{1992389396183491} \approx 25.333765827
Share
Copied to clipboard
\frac{0.573576436351046}{a} = \frac{0.9961946980917455}{44}
Evaluate trigonometric functions in the problem
44\times 0.573576436351046=a\times 0.9961946980917455
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 44a, the least common multiple of a,44.
25.237363199446024=a\times 0.9961946980917455
Multiply 44 and 0.573576436351046 to get 25.237363199446024.
a\times 0.9961946980917455=25.237363199446024
Swap sides so that all variable terms are on the left hand side.
a=\frac{25.237363199446024}{0.9961946980917455}
Divide both sides by 0.9961946980917455.
a=\frac{252373631994460240}{9961946980917455}
Expand \frac{25.237363199446024}{0.9961946980917455} by multiplying both numerator and the denominator by 10000000000000000.
a=\frac{50474726398892048}{1992389396183491}
Reduce the fraction \frac{252373631994460240}{9961946980917455} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}