Skip to main content
Evaluate
Tick mark Image

Share

\frac{-0.9853939138375122}{\sin(-45) \cdot \cos(240)}
Evaluate trigonometric functions in the problem
\frac{-0.9853939138375122}{\frac{1}{2}\left(\sin(-45-240)+\sin(-45+240)\right)}
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
\frac{-0.9853939138375122}{\frac{1}{2}\left(\sin(-285)+\sin(195)\right)}
Subtract 240 from -45. Add 240 to -45.
\frac{-0.9853939138375122}{\frac{1}{4}\sqrt{2}}
Do the calculations.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{4}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-0.9853939138375122}{\frac{1}{4}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{4}\times 2}
The square of \sqrt{2} is 2.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{2}}
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
-0.9853939138375122\sqrt{2}\times 2
Divide -0.9853939138375122\sqrt{2} by \frac{1}{2} by multiplying -0.9853939138375122\sqrt{2} by the reciprocal of \frac{1}{2}.
-1.9707878276750244\sqrt{2}
Multiply -0.9853939138375122 and 2 to get -1.9707878276750244.