Evaluate
-\frac{4926969569187561\sqrt{2}}{2500000000000000}\approx -2.787114874
Share
Copied to clipboard
\frac{-0.9853939138375122}{\sin(-45) \cdot \cos(240)}
Evaluate trigonometric functions in the problem
\frac{-0.9853939138375122}{\frac{1}{2}\left(\sin(-45-240)+\sin(-45+240)\right)}
Use \sin(x)\cos(y)=\frac{1}{2}\left(\sin(x-y)+\sin(x+y)\right) to obtain the result.
\frac{-0.9853939138375122}{\frac{1}{2}\left(\sin(-285)+\sin(195)\right)}
Subtract 240 from -45. Add 240 to -45.
\frac{-0.9853939138375122}{\frac{1}{4}\sqrt{2}}
Do the calculations.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{4}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{-0.9853939138375122}{\frac{1}{4}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{4}\times 2}
The square of \sqrt{2} is 2.
\frac{-0.9853939138375122\sqrt{2}}{\frac{1}{2}}
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
-0.9853939138375122\sqrt{2}\times 2
Divide -0.9853939138375122\sqrt{2} by \frac{1}{2} by multiplying -0.9853939138375122\sqrt{2} by the reciprocal of \frac{1}{2}.
-1.9707878276750244\sqrt{2}
Multiply -0.9853939138375122 and 2 to get -1.9707878276750244.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}