Solve for ψ
\psi =\frac{t^{2}}{4}
t\neq 0
Solve for t
t=2\sqrt{\psi }
t=-2\sqrt{\psi }\text{, }\psi >0
Share
Copied to clipboard
\left(t^{2}+4\right)\psi =t^{2}\left(1+\frac{t^{2}}{4}\right)
Multiply both sides of the equation by t^{2}\left(t^{2}+4\right), the least common multiple of t^{2},t^{2}+4.
t^{2}\psi +4\psi =t^{2}\left(1+\frac{t^{2}}{4}\right)
Use the distributive property to multiply t^{2}+4 by \psi .
t^{2}\psi +4\psi =t^{2}+t^{2}\times \frac{t^{2}}{4}
Use the distributive property to multiply t^{2} by 1+\frac{t^{2}}{4}.
t^{2}\psi +4\psi =t^{2}+\frac{t^{2}t^{2}}{4}
Express t^{2}\times \frac{t^{2}}{4} as a single fraction.
t^{2}\psi +4\psi =t^{2}+\frac{t^{4}}{4}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
4t^{2}\psi +16\psi =4t^{2}+t^{4}
Multiply both sides of the equation by 4.
\left(4t^{2}+16\right)\psi =4t^{2}+t^{4}
Combine all terms containing \psi .
\left(4t^{2}+16\right)\psi =t^{4}+4t^{2}
The equation is in standard form.
\frac{\left(4t^{2}+16\right)\psi }{4t^{2}+16}=\frac{t^{2}\left(t^{2}+4\right)}{4t^{2}+16}
Divide both sides by 4t^{2}+16.
\psi =\frac{t^{2}\left(t^{2}+4\right)}{4t^{2}+16}
Dividing by 4t^{2}+16 undoes the multiplication by 4t^{2}+16.
\psi =\frac{t^{2}}{4}
Divide \left(4+t^{2}\right)t^{2} by 4t^{2}+16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}