Solve for k
k=-\frac{x}{2\pi }-\frac{1}{15}
Solve for x
x=\frac{2\pi \left(-15k-1\right)}{15}
Graph
Share
Copied to clipboard
3\pi -15x=5\pi +30k\pi
Multiply both sides of the equation by 15, the least common multiple of 5,3.
5\pi +30k\pi =3\pi -15x
Swap sides so that all variable terms are on the left hand side.
30k\pi =3\pi -15x-5\pi
Subtract 5\pi from both sides.
30k\pi =-2\pi -15x
Combine 3\pi and -5\pi to get -2\pi .
30\pi k=-15x-2\pi
The equation is in standard form.
\frac{30\pi k}{30\pi }=\frac{-15x-2\pi }{30\pi }
Divide both sides by 30\pi .
k=\frac{-15x-2\pi }{30\pi }
Dividing by 30\pi undoes the multiplication by 30\pi .
k=-\frac{x}{2\pi }-\frac{1}{15}
Divide -2\pi -15x by 30\pi .
3\pi -15x=5\pi +30k\pi
Multiply both sides of the equation by 15, the least common multiple of 5,3.
-15x=5\pi +30k\pi -3\pi
Subtract 3\pi from both sides.
-15x=2\pi +30k\pi
Combine 5\pi and -3\pi to get 2\pi .
-15x=30\pi k+2\pi
The equation is in standard form.
\frac{-15x}{-15}=\frac{30\pi k+2\pi }{-15}
Divide both sides by -15.
x=\frac{30\pi k+2\pi }{-15}
Dividing by -15 undoes the multiplication by -15.
x=-2\pi k-\frac{2\pi }{15}
Divide 2\pi +30\pi k by -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}