Evaluate
-4a^{6}+\frac{\pi a^{4}}{4}
Expand
-4a^{6}+\frac{\pi a^{4}}{4}
Share
Copied to clipboard
\frac{\pi }{4a}a^{5}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Express \frac{\frac{\pi }{4}}{a} as a single fraction.
\frac{\pi a^{5}}{4a}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Express \frac{\pi }{4a}a^{5} as a single fraction.
\frac{\pi a^{4}}{4}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Cancel out a in both numerator and denominator.
\frac{\pi a^{4}}{4}+2^{2}\left(a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Expand \left(2a^{3}\right)^{2}.
\frac{\pi a^{4}}{4}+2^{2}a^{6}+\left(-2a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2a^{2}\right)^{3}
Calculate 2 to the power of 2 and get 4.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2\right)^{3}\left(a^{2}\right)^{3}
Expand \left(-2a^{2}\right)^{3}.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2\right)^{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\pi a^{4}}{4}+4a^{6}-8a^{6}
Calculate -2 to the power of 3 and get -8.
\frac{\pi a^{4}}{4}-4a^{6}
Combine 4a^{6} and -8a^{6} to get -4a^{6}.
\frac{\pi a^{4}}{4}+\frac{4\left(-4\right)a^{6}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4a^{6} times \frac{4}{4}.
\frac{\pi a^{4}+4\left(-4\right)a^{6}}{4}
Since \frac{\pi a^{4}}{4} and \frac{4\left(-4\right)a^{6}}{4} have the same denominator, add them by adding their numerators.
\frac{\pi a^{4}-16a^{6}}{4}
Do the multiplications in \pi a^{4}+4\left(-4\right)a^{6}.
\frac{\pi }{4a}a^{5}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Express \frac{\frac{\pi }{4}}{a} as a single fraction.
\frac{\pi a^{5}}{4a}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Express \frac{\pi }{4a}a^{5} as a single fraction.
\frac{\pi a^{4}}{4}+\left(2a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Cancel out a in both numerator and denominator.
\frac{\pi a^{4}}{4}+2^{2}\left(a^{3}\right)^{2}+\left(-2a^{2}\right)^{3}
Expand \left(2a^{3}\right)^{2}.
\frac{\pi a^{4}}{4}+2^{2}a^{6}+\left(-2a^{2}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2a^{2}\right)^{3}
Calculate 2 to the power of 2 and get 4.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2\right)^{3}\left(a^{2}\right)^{3}
Expand \left(-2a^{2}\right)^{3}.
\frac{\pi a^{4}}{4}+4a^{6}+\left(-2\right)^{3}a^{6}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\pi a^{4}}{4}+4a^{6}-8a^{6}
Calculate -2 to the power of 3 and get -8.
\frac{\pi a^{4}}{4}-4a^{6}
Combine 4a^{6} and -8a^{6} to get -4a^{6}.
\frac{\pi a^{4}}{4}+\frac{4\left(-4\right)a^{6}}{4}
To add or subtract expressions, expand them to make their denominators the same. Multiply -4a^{6} times \frac{4}{4}.
\frac{\pi a^{4}+4\left(-4\right)a^{6}}{4}
Since \frac{\pi a^{4}}{4} and \frac{4\left(-4\right)a^{6}}{4} have the same denominator, add them by adding their numerators.
\frac{\pi a^{4}-16a^{6}}{4}
Do the multiplications in \pi a^{4}+4\left(-4\right)a^{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}