Solve for Y
Y\in \mathrm{R}
Solve for F
F\in \mathrm{R}
Share
Copied to clipboard
\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Y-y\right)+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Z-z\right)=0
Combine x and -x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Z-z\right)=0
Use the distributive property to multiply \frac{\mathrm{d}}{\mathrm{d}x}(F) by Y-y.
\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=0
Use the distributive property to multiply \frac{\mathrm{d}}{\mathrm{d}x}(F) by Z-z.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0 from both sides. Anything subtracted from zero gives its negation.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y
Add \frac{\mathrm{d}}{\mathrm{d}x}(F)y to both sides.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y-\frac{\mathrm{d}}{\mathrm{d}x}(F)Z
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(F)Z from both sides.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y-\frac{\mathrm{d}}{\mathrm{d}x}(F)Z+\frac{\mathrm{d}}{\mathrm{d}x}(F)z
Add \frac{\mathrm{d}}{\mathrm{d}x}(F)z to both sides.
Y\frac{\mathrm{d}}{\mathrm{d}x}(F)=y\frac{\mathrm{d}}{\mathrm{d}x}(F)-Z\frac{\mathrm{d}}{\mathrm{d}x}(F)+z\frac{\mathrm{d}}{\mathrm{d}x}(F)
Reorder the terms.
Y\frac{\mathrm{d}}{\mathrm{d}x}(F)=y\frac{\mathrm{d}}{\mathrm{d}x}(F)+z\frac{\mathrm{d}}{\mathrm{d}x}(F)-Z\frac{\mathrm{d}}{\mathrm{d}x}(F)
Reorder the terms.
\text{true}
The equation is in standard form.
Y\in \mathrm{R}
This is true for any Y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}