Skip to main content
Solve for Y
Tick mark Image
Solve for F
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Y-y\right)+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Z-z\right)=0
Combine x and -x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(Z-z\right)=0
Use the distributive property to multiply \frac{\mathrm{d}}{\mathrm{d}x}(F) by Y-y.
\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=0
Use the distributive property to multiply \frac{\mathrm{d}}{\mathrm{d}x}(F) by Z-z.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0 from both sides. Anything subtracted from zero gives its negation.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y+\frac{\mathrm{d}}{\mathrm{d}x}(F)Z-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y
Add \frac{\mathrm{d}}{\mathrm{d}x}(F)y to both sides.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y-\frac{\mathrm{d}}{\mathrm{d}x}(F)z=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y-\frac{\mathrm{d}}{\mathrm{d}x}(F)Z
Subtract \frac{\mathrm{d}}{\mathrm{d}x}(F)Z from both sides.
\frac{\mathrm{d}}{\mathrm{d}x}(F)Y=-\frac{\mathrm{d}}{\mathrm{d}x}(F)\times 0+\frac{\mathrm{d}}{\mathrm{d}x}(F)y-\frac{\mathrm{d}}{\mathrm{d}x}(F)Z+\frac{\mathrm{d}}{\mathrm{d}x}(F)z
Add \frac{\mathrm{d}}{\mathrm{d}x}(F)z to both sides.
Y\frac{\mathrm{d}}{\mathrm{d}x}(F)=y\frac{\mathrm{d}}{\mathrm{d}x}(F)-Z\frac{\mathrm{d}}{\mathrm{d}x}(F)+z\frac{\mathrm{d}}{\mathrm{d}x}(F)
Reorder the terms.
Y\frac{\mathrm{d}}{\mathrm{d}x}(F)=y\frac{\mathrm{d}}{\mathrm{d}x}(F)+z\frac{\mathrm{d}}{\mathrm{d}x}(F)-Z\frac{\mathrm{d}}{\mathrm{d}x}(F)
Reorder the terms.
\text{true}
The equation is in standard form.
Y\in \mathrm{R}
This is true for any Y.