\frac { \partial E } { d r } = - K E
Solve for E
\left\{\begin{matrix}E=0\text{, }&d\neq 0\text{ and }r\neq 0\\E\in \mathrm{R}\text{, }&\left(d=-\frac{∂}{Kr}\text{ and }r\neq 0\text{ and }K\neq 0\text{ and }∂\neq 0\right)\text{ or }\left(d\neq 0\text{ and }∂=0\text{ and }K=0\text{ and }r\neq 0\right)\end{matrix}\right.
Solve for K
\left\{\begin{matrix}K=-\frac{∂}{dr}\text{, }&d\neq 0\text{ and }r\neq 0\\K\in \mathrm{R}\text{, }&E=0\text{ and }d\neq 0\text{ and }r\neq 0\end{matrix}\right.
Share
Copied to clipboard
∂E=\left(-K\right)Edr
Multiply both sides of the equation by dr.
∂E-\left(-K\right)Edr=0
Subtract \left(-K\right)Edr from both sides.
∂E+KEdr=0
Multiply -1 and -1 to get 1.
\left(∂+Kdr\right)E=0
Combine all terms containing E.
\left(Kdr+∂\right)E=0
The equation is in standard form.
E=0
Divide 0 by Kdr+∂.
∂E=\left(-K\right)Edr
Multiply both sides of the equation by dr.
\left(-K\right)Edr=∂E
Swap sides so that all variable terms are on the left hand side.
-EKdr=E∂
Reorder the terms.
\left(-Edr\right)K=E∂
The equation is in standard form.
\frac{\left(-Edr\right)K}{-Edr}=\frac{E∂}{-Edr}
Divide both sides by -Edr.
K=\frac{E∂}{-Edr}
Dividing by -Edr undoes the multiplication by -Edr.
K=-\frac{∂}{dr}
Divide E∂ by -Edr.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}