Skip to main content
Solve for ∂
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x∂-\left(-x+∂_{0}\right)\sin(x)=-x\left(-x+∂_{0}\right)
Multiply both sides of the equation by x\left(-x+∂_{0}\right), the least common multiple of x-∂_{0},x.
-x∂-\left(-x\sin(x)+∂_{0}\sin(x)\right)=-x\left(-x+∂_{0}\right)
Use the distributive property to multiply -x+∂_{0} by \sin(x).
-x∂+x\sin(x)-∂_{0}\sin(x)=-x\left(-x+∂_{0}\right)
To find the opposite of -x\sin(x)+∂_{0}\sin(x), find the opposite of each term.
-x∂+x\sin(x)-∂_{0}\sin(x)=x^{2}-x∂_{0}
Use the distributive property to multiply -x by -x+∂_{0}.
-x∂-∂_{0}\sin(x)=x^{2}-x∂_{0}-x\sin(x)
Subtract x\sin(x) from both sides.
-x∂=x^{2}-x∂_{0}-x\sin(x)+∂_{0}\sin(x)
Add ∂_{0}\sin(x) to both sides.
\left(-x\right)∂=∂_{0}\sin(x)-x\sin(x)-x∂_{0}+x^{2}
The equation is in standard form.
\frac{\left(-x\right)∂}{-x}=\frac{x\left(-\sin(x)+x-∂_{0}\right)+∂_{0}\sin(x)}{-x}
Divide both sides by -x.
∂=\frac{x\left(-\sin(x)+x-∂_{0}\right)+∂_{0}\sin(x)}{-x}
Dividing by -x undoes the multiplication by -x.
∂=\frac{\left(∂_{0}-x\right)\left(-\sin(x)+x\right)}{x}
Divide ∂_{0}\sin(x)+x\left(x-∂_{0}-\sin(x)\right) by -x.