Solve for ∂
∂=-\frac{∂_{0}\sin(x)}{x}+\sin(x)+∂_{0}-x
x\neq ∂_{0}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
-x∂-\left(-x+∂_{0}\right)\sin(x)=-x\left(-x+∂_{0}\right)
Multiply both sides of the equation by x\left(-x+∂_{0}\right), the least common multiple of x-∂_{0},x.
-x∂-\left(-x\sin(x)+∂_{0}\sin(x)\right)=-x\left(-x+∂_{0}\right)
Use the distributive property to multiply -x+∂_{0} by \sin(x).
-x∂+x\sin(x)-∂_{0}\sin(x)=-x\left(-x+∂_{0}\right)
To find the opposite of -x\sin(x)+∂_{0}\sin(x), find the opposite of each term.
-x∂+x\sin(x)-∂_{0}\sin(x)=x^{2}-x∂_{0}
Use the distributive property to multiply -x by -x+∂_{0}.
-x∂-∂_{0}\sin(x)=x^{2}-x∂_{0}-x\sin(x)
Subtract x\sin(x) from both sides.
-x∂=x^{2}-x∂_{0}-x\sin(x)+∂_{0}\sin(x)
Add ∂_{0}\sin(x) to both sides.
\left(-x\right)∂=∂_{0}\sin(x)-x\sin(x)-x∂_{0}+x^{2}
The equation is in standard form.
\frac{\left(-x\right)∂}{-x}=\frac{x\left(-\sin(x)+x-∂_{0}\right)+∂_{0}\sin(x)}{-x}
Divide both sides by -x.
∂=\frac{x\left(-\sin(x)+x-∂_{0}\right)+∂_{0}\sin(x)}{-x}
Dividing by -x undoes the multiplication by -x.
∂=\frac{\left(∂_{0}-x\right)\left(-\sin(x)+x\right)}{x}
Divide ∂_{0}\sin(x)+x\left(x-∂_{0}-\sin(x)\right) by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}