\frac { \log x ^ { - 1 } + \log ^ { - 1 } x } { \log d e } = - \frac { 3 } { 2 }
Solve for d
d=e^{-\frac{2\ln(10)^{2}}{3\ln(x)}}x^{-\frac{1}{\ln(x)}+\frac{2}{3}}
x>0\text{ and }x\neq 1\text{ and }x\neq \frac{1}{10}\text{ and }x\neq 10\text{ and }\left(e^{-\frac{2\ln(10)^{2}}{3\ln(x)}}x^{-\frac{1}{\ln(x)}+\frac{2}{3}}-\frac{1}{e}>0\text{ or }e^{-\frac{2\ln(10)^{2}}{3\ln(x)}}x^{-\frac{1}{\ln(x)}+\frac{2}{3}}>0\right)\text{ and }e^{-\frac{2\ln(10)^{2}}{3\ln(x)}}x^{-\frac{1}{\ln(x)}+\frac{2}{3}}-\frac{1}{e}\neq 0\text{ and }e^{-\frac{2\ln(10)^{2}}{3\ln(x)}}x^{-\frac{1}{\ln(x)}+\frac{2}{3}}\neq \frac{1}{e}
Solve for x
\left\{\begin{matrix}x=d^{\frac{3}{4}}e^{\frac{\sqrt{9\ln(d)^{2}+18\ln(d)+16\ln(10)^{2}+9}+3}{4}}\text{, }&d^{\frac{3}{4}}e^{\frac{\sqrt{9\ln(d)^{2}+18\ln(d)+16\ln(10)^{2}+9}+3}{4}}\neq 1\text{ and }d>0\text{ and }d\neq \frac{1}{e}\\x=d^{\frac{3}{4}}e^{\frac{-\sqrt{9\ln(d)^{2}+18\ln(d)+16\ln(10)^{2}+9}+3}{4}}\text{, }&d^{\frac{3}{4}}e^{\frac{-\sqrt{9\ln(d)^{2}+18\ln(d)+16\ln(10)^{2}+9}+3}{4}}\neq 1\text{ and }d>0\text{ and }d\neq \frac{1}{e}\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}