Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}-\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{y\left(y-4\right)-y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4y-y^{2}-4y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Do the multiplications in y\left(y-4\right)-y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Combine like terms in y^{2}-4y-y^{2}-4y.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}+\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)+y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y^{2}-4y+y^{2}+4y}{\left(y-4\right)\left(y+4\right)}}
Do the multiplications in y\left(y-4\right)+y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}}
Combine like terms in y^{2}-4y+y^{2}+4y.
\frac{-8y\left(y-4\right)\left(y+4\right)}{\left(y-4\right)\left(y+4\right)\times 2y^{2}}
Divide \frac{-8y}{\left(y-4\right)\left(y+4\right)} by \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)} by multiplying \frac{-8y}{\left(y-4\right)\left(y+4\right)} by the reciprocal of \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}.
\frac{-4}{y}
Cancel out 2y\left(y-4\right)\left(y+4\right) in both numerator and denominator.
\frac{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}-\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{y\left(y-4\right)-y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4y-y^{2}-4y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Do the multiplications in y\left(y-4\right)-y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Combine like terms in y^{2}-4y-y^{2}-4y.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}+\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)+y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y^{2}-4y+y^{2}+4y}{\left(y-4\right)\left(y+4\right)}}
Do the multiplications in y\left(y-4\right)+y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}}
Combine like terms in y^{2}-4y+y^{2}+4y.
\frac{-8y\left(y-4\right)\left(y+4\right)}{\left(y-4\right)\left(y+4\right)\times 2y^{2}}
Divide \frac{-8y}{\left(y-4\right)\left(y+4\right)} by \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)} by multiplying \frac{-8y}{\left(y-4\right)\left(y+4\right)} by the reciprocal of \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}.
\frac{-4}{y}
Cancel out 2y\left(y-4\right)\left(y+4\right) in both numerator and denominator.