Evaluate
-\frac{4}{y}
Expand
-\frac{4}{y}
Graph
Share
Copied to clipboard
\frac{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}-\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{y\left(y-4\right)-y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4y-y^{2}-4y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Do the multiplications in y\left(y-4\right)-y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Combine like terms in y^{2}-4y-y^{2}-4y.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}+\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)+y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y^{2}-4y+y^{2}+4y}{\left(y-4\right)\left(y+4\right)}}
Do the multiplications in y\left(y-4\right)+y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}}
Combine like terms in y^{2}-4y+y^{2}+4y.
\frac{-8y\left(y-4\right)\left(y+4\right)}{\left(y-4\right)\left(y+4\right)\times 2y^{2}}
Divide \frac{-8y}{\left(y-4\right)\left(y+4\right)} by \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)} by multiplying \frac{-8y}{\left(y-4\right)\left(y+4\right)} by the reciprocal of \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}.
\frac{-4}{y}
Cancel out 2y\left(y-4\right)\left(y+4\right) in both numerator and denominator.
\frac{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}-\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{y\left(y-4\right)-y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4y-y^{2}-4y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Do the multiplications in y\left(y-4\right)-y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y}{y+4}+\frac{y}{y-4}}
Combine like terms in y^{2}-4y-y^{2}-4y.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)}+\frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+4 and y-4 is \left(y-4\right)\left(y+4\right). Multiply \frac{y}{y+4} times \frac{y-4}{y-4}. Multiply \frac{y}{y-4} times \frac{y+4}{y+4}.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y\left(y-4\right)+y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)}}
Since \frac{y\left(y-4\right)}{\left(y-4\right)\left(y+4\right)} and \frac{y\left(y+4\right)}{\left(y-4\right)\left(y+4\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{y^{2}-4y+y^{2}+4y}{\left(y-4\right)\left(y+4\right)}}
Do the multiplications in y\left(y-4\right)+y\left(y+4\right).
\frac{\frac{-8y}{\left(y-4\right)\left(y+4\right)}}{\frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}}
Combine like terms in y^{2}-4y+y^{2}+4y.
\frac{-8y\left(y-4\right)\left(y+4\right)}{\left(y-4\right)\left(y+4\right)\times 2y^{2}}
Divide \frac{-8y}{\left(y-4\right)\left(y+4\right)} by \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)} by multiplying \frac{-8y}{\left(y-4\right)\left(y+4\right)} by the reciprocal of \frac{2y^{2}}{\left(y-4\right)\left(y+4\right)}.
\frac{-4}{y}
Cancel out 2y\left(y-4\right)\left(y+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}