Evaluate
-y
Expand
-y
Graph
Share
Copied to clipboard
\frac{\frac{yy}{9y}-\frac{9\times 9}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and y is 9y. Multiply \frac{y}{9} times \frac{y}{y}. Multiply \frac{9}{y} times \frac{9}{9}.
\frac{\frac{yy-9\times 9}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
Since \frac{yy}{9y} and \frac{9\times 9}{9y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-81}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
Do the multiplications in yy-9\times 9.
\frac{\frac{y^{2}-81}{9y}}{\frac{9\times 9}{9y^{2}}-\frac{y^{2}}{9y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and 9 is 9y^{2}. Multiply \frac{9}{y^{2}} times \frac{9}{9}. Multiply \frac{1}{9} times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-81}{9y}}{\frac{9\times 9-y^{2}}{9y^{2}}}
Since \frac{9\times 9}{9y^{2}} and \frac{y^{2}}{9y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-81}{9y}}{\frac{81-y^{2}}{9y^{2}}}
Do the multiplications in 9\times 9-y^{2}.
\frac{\left(y^{2}-81\right)\times 9y^{2}}{9y\left(81-y^{2}\right)}
Divide \frac{y^{2}-81}{9y} by \frac{81-y^{2}}{9y^{2}} by multiplying \frac{y^{2}-81}{9y} by the reciprocal of \frac{81-y^{2}}{9y^{2}}.
\frac{-9y^{2}\left(-y^{2}+81\right)}{9y\left(-y^{2}+81\right)}
Extract the negative sign in y^{2}-81.
-y
Cancel out 9y\left(-y^{2}+81\right) in both numerator and denominator.
\frac{\frac{yy}{9y}-\frac{9\times 9}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and y is 9y. Multiply \frac{y}{9} times \frac{y}{y}. Multiply \frac{9}{y} times \frac{9}{9}.
\frac{\frac{yy-9\times 9}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
Since \frac{yy}{9y} and \frac{9\times 9}{9y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-81}{9y}}{\frac{9}{y^{2}}-\frac{1}{9}}
Do the multiplications in yy-9\times 9.
\frac{\frac{y^{2}-81}{9y}}{\frac{9\times 9}{9y^{2}}-\frac{y^{2}}{9y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and 9 is 9y^{2}. Multiply \frac{9}{y^{2}} times \frac{9}{9}. Multiply \frac{1}{9} times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{2}-81}{9y}}{\frac{9\times 9-y^{2}}{9y^{2}}}
Since \frac{9\times 9}{9y^{2}} and \frac{y^{2}}{9y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-81}{9y}}{\frac{81-y^{2}}{9y^{2}}}
Do the multiplications in 9\times 9-y^{2}.
\frac{\left(y^{2}-81\right)\times 9y^{2}}{9y\left(81-y^{2}\right)}
Divide \frac{y^{2}-81}{9y} by \frac{81-y^{2}}{9y^{2}} by multiplying \frac{y^{2}-81}{9y} by the reciprocal of \frac{81-y^{2}}{9y^{2}}.
\frac{-9y^{2}\left(-y^{2}+81\right)}{9y\left(-y^{2}+81\right)}
Extract the negative sign in y^{2}-81.
-y
Cancel out 9y\left(-y^{2}+81\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}