Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(y+10\right)\left(y^{2}-10y+100\right)}{\left(y-10\right)\left(y+10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Factor the expressions that are not already factored in \frac{y^{3}+1000}{y^{4}-10000}.
\frac{\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Cancel out y+10 in both numerator and denominator.
\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Express \frac{\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}} as a single fraction.
\frac{y^{2}-10y+100}{y-10}-\frac{10y}{y-10}
Multiply y^{2}+100 and \left(y^{2}+100\right)^{-1} to get 1.
\frac{y^{2}-10y+100-10y}{y-10}
Since \frac{y^{2}-10y+100}{y-10} and \frac{10y}{y-10} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-20y+100}{y-10}
Combine like terms in y^{2}-10y+100-10y.
\frac{\left(y-10\right)^{2}}{y-10}
Factor the expressions that are not already factored in \frac{y^{2}-20y+100}{y-10}.
y-10
Cancel out y-10 in both numerator and denominator.
\frac{\frac{\left(y+10\right)\left(y^{2}-10y+100\right)}{\left(y-10\right)\left(y+10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Factor the expressions that are not already factored in \frac{y^{3}+1000}{y^{4}-10000}.
\frac{\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Cancel out y+10 in both numerator and denominator.
\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)\left(y^{2}+100\right)^{-1}}-\frac{10y}{y-10}
Express \frac{\frac{y^{2}-10y+100}{\left(y-10\right)\left(y^{2}+100\right)}}{\left(y^{2}+100\right)^{-1}} as a single fraction.
\frac{y^{2}-10y+100}{y-10}-\frac{10y}{y-10}
Multiply y^{2}+100 and \left(y^{2}+100\right)^{-1} to get 1.
\frac{y^{2}-10y+100-10y}{y-10}
Since \frac{y^{2}-10y+100}{y-10} and \frac{10y}{y-10} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}-20y+100}{y-10}
Combine like terms in y^{2}-10y+100-10y.
\frac{\left(y-10\right)^{2}}{y-10}
Factor the expressions that are not already factored in \frac{y^{2}-20y+100}{y-10}.
y-10
Cancel out y-10 in both numerator and denominator.