Evaluate
\frac{\left(1-8x\right)\left(x+2\right)}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Expand
\frac{2-15x-8x^{2}}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-2 is \left(x-2\right)\left(x+1\right). Multiply \frac{x-2}{x+1} times \frac{x-2}{x-2}. Multiply \frac{x+3}{x-2} times \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Since \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-2x+4-x^{2}-x-3x-3}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Do the multiplications in \left(x-2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right).
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Combine like terms in x^{2}-2x-2x+4-x^{2}-x-3x-3.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply \frac{x-1}{x+2} times \frac{x+1}{x+1}. Multiply \frac{x-5}{x+1} times \frac{x+2}{x+2}.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)+\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}}
Since \frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+x-x-1+x^{2}+2x-5x-10}{\left(x+1\right)\left(x+2\right)}}
Do the multiplications in \left(x-1\right)\left(x+1\right)+\left(x-5\right)\left(x+2\right).
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)}}
Combine like terms in x^{2}+x-x-1+x^{2}+2x-5x-10.
\frac{\left(-8x+1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(2x^{2}-3x-11\right)}
Divide \frac{-8x+1}{\left(x-2\right)\left(x+1\right)} by \frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)} by multiplying \frac{-8x+1}{\left(x-2\right)\left(x+1\right)} by the reciprocal of \frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(x+2\right)\left(-8x+1\right)}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Cancel out x+1 in both numerator and denominator.
\frac{-8x^{2}+x-16x+2}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Apply the distributive property by multiplying each term of x+2 by each term of -8x+1.
\frac{-8x^{2}-15x+2}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Combine x and -16x to get -15x.
\frac{-8x^{2}-15x+2}{2x^{3}-3x^{2}-11x-4x^{2}+6x+22}
Apply the distributive property by multiplying each term of x-2 by each term of 2x^{2}-3x-11.
\frac{-8x^{2}-15x+2}{2x^{3}-7x^{2}-11x+6x+22}
Combine -3x^{2} and -4x^{2} to get -7x^{2}.
\frac{-8x^{2}-15x+2}{2x^{3}-7x^{2}-5x+22}
Combine -11x and 6x to get -5x.
\frac{\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and x-2 is \left(x-2\right)\left(x+1\right). Multiply \frac{x-2}{x+1} times \frac{x-2}{x-2}. Multiply \frac{x+3}{x-2} times \frac{x+1}{x+1}.
\frac{\frac{\left(x-2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Since \frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} and \frac{\left(x+3\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-2x-2x+4-x^{2}-x-3x-3}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Do the multiplications in \left(x-2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right).
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{x-1}{x+2}+\frac{x-5}{x+1}}
Combine like terms in x^{2}-2x-2x+4-x^{2}-x-3x-3.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and x+1 is \left(x+1\right)\left(x+2\right). Multiply \frac{x-1}{x+2} times \frac{x+1}{x+1}. Multiply \frac{x-5}{x+1} times \frac{x+2}{x+2}.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{\left(x-1\right)\left(x+1\right)+\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}}
Since \frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-5\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+x-x-1+x^{2}+2x-5x-10}{\left(x+1\right)\left(x+2\right)}}
Do the multiplications in \left(x-1\right)\left(x+1\right)+\left(x-5\right)\left(x+2\right).
\frac{\frac{-8x+1}{\left(x-2\right)\left(x+1\right)}}{\frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)}}
Combine like terms in x^{2}+x-x-1+x^{2}+2x-5x-10.
\frac{\left(-8x+1\right)\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+1\right)\left(2x^{2}-3x-11\right)}
Divide \frac{-8x+1}{\left(x-2\right)\left(x+1\right)} by \frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)} by multiplying \frac{-8x+1}{\left(x-2\right)\left(x+1\right)} by the reciprocal of \frac{2x^{2}-3x-11}{\left(x+1\right)\left(x+2\right)}.
\frac{\left(x+2\right)\left(-8x+1\right)}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Cancel out x+1 in both numerator and denominator.
\frac{-8x^{2}+x-16x+2}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Apply the distributive property by multiplying each term of x+2 by each term of -8x+1.
\frac{-8x^{2}-15x+2}{\left(x-2\right)\left(2x^{2}-3x-11\right)}
Combine x and -16x to get -15x.
\frac{-8x^{2}-15x+2}{2x^{3}-3x^{2}-11x-4x^{2}+6x+22}
Apply the distributive property by multiplying each term of x-2 by each term of 2x^{2}-3x-11.
\frac{-8x^{2}-15x+2}{2x^{3}-7x^{2}-11x+6x+22}
Combine -3x^{2} and -4x^{2} to get -7x^{2}.
\frac{-8x^{2}-15x+2}{2x^{3}-7x^{2}-5x+22}
Combine -11x and 6x to get -5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}