Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}+\frac{2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and x+2 is 2x\left(x+2\right). Multiply \frac{x-2}{2x} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{2x}{2x}.
\frac{\frac{\left(x-2\right)\left(x+2\right)+2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Since \frac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)} and \frac{2x}{2x\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+2x-2x-4+2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+2x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Combine like terms in x^{2}+2x-2x-4+2x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x\left(x+3\right)}}
Factor x^{2}+3x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x\left(x+3\right)}{2x\left(x+3\right)}-\frac{6\times 2}{2x\left(x+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and x\left(x+3\right) is 2x\left(x+3\right). Multiply \frac{3}{2} times \frac{x\left(x+3\right)}{x\left(x+3\right)}. Multiply \frac{6}{x\left(x+3\right)} times \frac{2}{2}.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x\left(x+3\right)-6\times 2}{2x\left(x+3\right)}}
Since \frac{3x\left(x+3\right)}{2x\left(x+3\right)} and \frac{6\times 2}{2x\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x^{2}+9x-12}{2x\left(x+3\right)}}
Do the multiplications in 3x\left(x+3\right)-6\times 2.
\frac{\left(x^{2}+2x-4\right)\times 2x\left(x+3\right)}{2x\left(x+2\right)\left(3x^{2}+9x-12\right)}
Divide \frac{x^{2}+2x-4}{2x\left(x+2\right)} by \frac{3x^{2}+9x-12}{2x\left(x+3\right)} by multiplying \frac{x^{2}+2x-4}{2x\left(x+2\right)} by the reciprocal of \frac{3x^{2}+9x-12}{2x\left(x+3\right)}.
\frac{\left(x+3\right)\left(x^{2}+2x-4\right)}{\left(x+2\right)\left(3x^{2}+9x-12\right)}
Cancel out 2x in both numerator and denominator.
\frac{x^{3}+5x^{2}+2x-12}{\left(x+2\right)\left(3x^{2}+9x-12\right)}
Use the distributive property to multiply x+3 by x^{2}+2x-4 and combine like terms.
\frac{x^{3}+5x^{2}+2x-12}{3x^{3}+15x^{2}+6x-24}
Use the distributive property to multiply x+2 by 3x^{2}+9x-12 and combine like terms.
\frac{\frac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)}+\frac{2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x and x+2 is 2x\left(x+2\right). Multiply \frac{x-2}{2x} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{2x}{2x}.
\frac{\frac{\left(x-2\right)\left(x+2\right)+2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Since \frac{\left(x-2\right)\left(x+2\right)}{2x\left(x+2\right)} and \frac{2x}{2x\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+2x-2x-4+2x}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+2x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x^{2}+3x}}
Combine like terms in x^{2}+2x-2x-4+2x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3}{2}-\frac{6}{x\left(x+3\right)}}
Factor x^{2}+3x.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x\left(x+3\right)}{2x\left(x+3\right)}-\frac{6\times 2}{2x\left(x+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and x\left(x+3\right) is 2x\left(x+3\right). Multiply \frac{3}{2} times \frac{x\left(x+3\right)}{x\left(x+3\right)}. Multiply \frac{6}{x\left(x+3\right)} times \frac{2}{2}.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x\left(x+3\right)-6\times 2}{2x\left(x+3\right)}}
Since \frac{3x\left(x+3\right)}{2x\left(x+3\right)} and \frac{6\times 2}{2x\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+2x-4}{2x\left(x+2\right)}}{\frac{3x^{2}+9x-12}{2x\left(x+3\right)}}
Do the multiplications in 3x\left(x+3\right)-6\times 2.
\frac{\left(x^{2}+2x-4\right)\times 2x\left(x+3\right)}{2x\left(x+2\right)\left(3x^{2}+9x-12\right)}
Divide \frac{x^{2}+2x-4}{2x\left(x+2\right)} by \frac{3x^{2}+9x-12}{2x\left(x+3\right)} by multiplying \frac{x^{2}+2x-4}{2x\left(x+2\right)} by the reciprocal of \frac{3x^{2}+9x-12}{2x\left(x+3\right)}.
\frac{\left(x+3\right)\left(x^{2}+2x-4\right)}{\left(x+2\right)\left(3x^{2}+9x-12\right)}
Cancel out 2x in both numerator and denominator.
\frac{x^{3}+5x^{2}+2x-12}{\left(x+2\right)\left(3x^{2}+9x-12\right)}
Use the distributive property to multiply x+3 by x^{2}+2x-4 and combine like terms.
\frac{x^{3}+5x^{2}+2x-12}{3x^{3}+15x^{2}+6x-24}
Use the distributive property to multiply x+2 by 3x^{2}+9x-12 and combine like terms.