Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+15 and x-5 is \left(x-5\right)\left(x+15\right). Multiply \frac{x-10}{x+15} times \frac{x-5}{x-5}. Multiply \frac{x-10}{x-5} times \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Since \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} and \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Do the multiplications in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Combine like terms in x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Since \frac{x-5}{x-5} and \frac{5}{x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Combine like terms in x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Divide \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by \frac{x-10}{x-5} by multiplying \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by the reciprocal of \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cancel out x-5 in both numerator and denominator.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+5\right)}{x+15}
Cancel out x-10 in both numerator and denominator.
\frac{2x+10}{x+15}
Expand the expression.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+15 and x-5 is \left(x-5\right)\left(x+15\right). Multiply \frac{x-10}{x+15} times \frac{x-5}{x-5}. Multiply \frac{x-10}{x-5} times \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Since \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} and \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Do the multiplications in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Combine like terms in x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Since \frac{x-5}{x-5} and \frac{5}{x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Combine like terms in x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Divide \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by \frac{x-10}{x-5} by multiplying \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by the reciprocal of \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cancel out x-5 in both numerator and denominator.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+5\right)}{x+15}
Cancel out x-10 in both numerator and denominator.
\frac{2x+10}{x+15}
Expand the expression.