Evaluate
\frac{2\left(x+5\right)}{x+15}
Expand
\frac{2\left(x+5\right)}{x+15}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+15 and x-5 is \left(x-5\right)\left(x+15\right). Multiply \frac{x-10}{x+15} times \frac{x-5}{x-5}. Multiply \frac{x-10}{x-5} times \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Since \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} and \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Do the multiplications in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Combine like terms in x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Since \frac{x-5}{x-5} and \frac{5}{x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Combine like terms in x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Divide \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by \frac{x-10}{x-5} by multiplying \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by the reciprocal of \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cancel out x-5 in both numerator and denominator.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+5\right)}{x+15}
Cancel out x-10 in both numerator and denominator.
\frac{2x+10}{x+15}
Expand the expression.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+15 and x-5 is \left(x-5\right)\left(x+15\right). Multiply \frac{x-10}{x+15} times \frac{x-5}{x-5}. Multiply \frac{x-10}{x-5} times \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Since \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} and \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Do the multiplications in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Combine like terms in x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Since \frac{x-5}{x-5} and \frac{5}{x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Combine like terms in x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Divide \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by \frac{x-10}{x-5} by multiplying \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} by the reciprocal of \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cancel out x-5 in both numerator and denominator.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+5\right)}{x+15}
Cancel out x-10 in both numerator and denominator.
\frac{2x+10}{x+15}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}