Evaluate
\frac{x^{2}+z}{z\left(z+1\right)}
Expand
\frac{x^{2}+z}{z\left(z+1\right)}
Share
Copied to clipboard
\frac{\frac{xx}{xz}+\frac{z}{xz}}{\frac{z}{x}+\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z and x is xz. Multiply \frac{x}{z} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{z}{z}.
\frac{\frac{xx+z}{xz}}{\frac{z}{x}+\frac{1}{x}}
Since \frac{xx}{xz} and \frac{z}{xz} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+z}{xz}}{\frac{z}{x}+\frac{1}{x}}
Do the multiplications in xx+z.
\frac{\frac{x^{2}+z}{xz}}{\frac{z+1}{x}}
Since \frac{z}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}+z\right)x}{xz\left(z+1\right)}
Divide \frac{x^{2}+z}{xz} by \frac{z+1}{x} by multiplying \frac{x^{2}+z}{xz} by the reciprocal of \frac{z+1}{x}.
\frac{x^{2}+z}{z\left(z+1\right)}
Cancel out x in both numerator and denominator.
\frac{x^{2}+z}{z^{2}+z}
Use the distributive property to multiply z by z+1.
\frac{\frac{xx}{xz}+\frac{z}{xz}}{\frac{z}{x}+\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of z and x is xz. Multiply \frac{x}{z} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{z}{z}.
\frac{\frac{xx+z}{xz}}{\frac{z}{x}+\frac{1}{x}}
Since \frac{xx}{xz} and \frac{z}{xz} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+z}{xz}}{\frac{z}{x}+\frac{1}{x}}
Do the multiplications in xx+z.
\frac{\frac{x^{2}+z}{xz}}{\frac{z+1}{x}}
Since \frac{z}{x} and \frac{1}{x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}+z\right)x}{xz\left(z+1\right)}
Divide \frac{x^{2}+z}{xz} by \frac{z+1}{x} by multiplying \frac{x^{2}+z}{xz} by the reciprocal of \frac{z+1}{x}.
\frac{x^{2}+z}{z\left(z+1\right)}
Cancel out x in both numerator and denominator.
\frac{x^{2}+z}{z^{2}+z}
Use the distributive property to multiply z by z+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}