Evaluate
-xy
Expand
-xy
Share
Copied to clipboard
\frac{\frac{xx}{xy}-\frac{yy}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{xx-yy}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
Do the multiplications in xx-yy.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{1}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}
Since \frac{y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{2}-y^{2}\right)x^{2}y^{2}}{xy\left(y^{2}-x^{2}\right)}
Divide \frac{x^{2}-y^{2}}{xy} by \frac{y^{2}-x^{2}}{x^{2}y^{2}} by multiplying \frac{x^{2}-y^{2}}{xy} by the reciprocal of \frac{y^{2}-x^{2}}{x^{2}y^{2}}.
\frac{-x^{2}y^{2}\left(-x^{2}+y^{2}\right)}{xy\left(-x^{2}+y^{2}\right)}
Extract the negative sign in x^{2}-y^{2}.
-xy
Cancel out xy\left(-x^{2}+y^{2}\right) in both numerator and denominator.
\frac{\frac{xx}{xy}-\frac{yy}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and x is xy. Multiply \frac{x}{y} times \frac{x}{x}. Multiply \frac{y}{x} times \frac{y}{y}.
\frac{\frac{xx-yy}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
Since \frac{xx}{xy} and \frac{yy}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{1}{x^{2}}-\frac{1}{y^{2}}}
Do the multiplications in xx-yy.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{y^{2}}{x^{2}y^{2}}-\frac{x^{2}}{x^{2}y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and y^{2} is x^{2}y^{2}. Multiply \frac{1}{x^{2}} times \frac{y^{2}}{y^{2}}. Multiply \frac{1}{y^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\frac{x^{2}-y^{2}}{xy}}{\frac{y^{2}-x^{2}}{x^{2}y^{2}}}
Since \frac{y^{2}}{x^{2}y^{2}} and \frac{x^{2}}{x^{2}y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(x^{2}-y^{2}\right)x^{2}y^{2}}{xy\left(y^{2}-x^{2}\right)}
Divide \frac{x^{2}-y^{2}}{xy} by \frac{y^{2}-x^{2}}{x^{2}y^{2}} by multiplying \frac{x^{2}-y^{2}}{xy} by the reciprocal of \frac{y^{2}-x^{2}}{x^{2}y^{2}}.
\frac{-x^{2}y^{2}\left(-x^{2}+y^{2}\right)}{xy\left(-x^{2}+y^{2}\right)}
Extract the negative sign in x^{2}-y^{2}.
-xy
Cancel out xy\left(-x^{2}+y^{2}\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}