Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x}{x-3}-\frac{2}{\left(x-3\right)\left(x-1\right)}}{\frac{5}{x-1}+\frac{5}{x-3}}=1
Factor x^{2}-4x+3.
\frac{\frac{x\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\frac{2}{\left(x-3\right)\left(x-1\right)}}{\frac{5}{x-1}+\frac{5}{x-3}}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and \left(x-3\right)\left(x-1\right) is \left(x-3\right)\left(x-1\right). Multiply \frac{x}{x-3} times \frac{x-1}{x-1}.
\frac{\frac{x\left(x-1\right)-2}{\left(x-3\right)\left(x-1\right)}}{\frac{5}{x-1}+\frac{5}{x-3}}=1
Since \frac{x\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} and \frac{2}{\left(x-3\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)}}{\frac{5}{x-1}+\frac{5}{x-3}}=1
Do the multiplications in x\left(x-1\right)-2.
\frac{\frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)}}{\frac{5\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}+\frac{5\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}}=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x-3 is \left(x-3\right)\left(x-1\right). Multiply \frac{5}{x-1} times \frac{x-3}{x-3}. Multiply \frac{5}{x-3} times \frac{x-1}{x-1}.
\frac{\frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)}}{\frac{5\left(x-3\right)+5\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}}=1
Since \frac{5\left(x-3\right)}{\left(x-3\right)\left(x-1\right)} and \frac{5\left(x-1\right)}{\left(x-3\right)\left(x-1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)}}{\frac{5x-15+5x-5}{\left(x-3\right)\left(x-1\right)}}=1
Do the multiplications in 5\left(x-3\right)+5\left(x-1\right).
\frac{\frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)}}{\frac{10x-20}{\left(x-3\right)\left(x-1\right)}}=1
Combine like terms in 5x-15+5x-5.
\frac{\left(x^{2}-x-2\right)\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(10x-20\right)}=1
Variable x cannot be equal to any of the values 1,3 since division by zero is not defined. Divide \frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)} by \frac{10x-20}{\left(x-3\right)\left(x-1\right)} by multiplying \frac{x^{2}-x-2}{\left(x-3\right)\left(x-1\right)} by the reciprocal of \frac{10x-20}{\left(x-3\right)\left(x-1\right)}.
\frac{\left(x^{3}-4x^{2}+x+6\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)\left(10x-20\right)}=1
Use the distributive property to multiply x^{2}-x-2 by x-3 and combine like terms.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{\left(x-3\right)\left(x-1\right)\left(10x-20\right)}=1
Use the distributive property to multiply x^{3}-4x^{2}+x+6 by x-1 and combine like terms.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{\left(x^{2}-4x+3\right)\left(10x-20\right)}=1
Use the distributive property to multiply x-3 by x-1 and combine like terms.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{10x^{3}-60x^{2}+110x-60}=1
Use the distributive property to multiply x^{2}-4x+3 by 10x-20 and combine like terms.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{10x^{3}-60x^{2}+110x-60}-1=0
Subtract 1 from both sides.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}-1=0
Factor 10x^{3}-60x^{2}+110x-60.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}-\frac{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6-10\left(x-3\right)\left(x-2\right)\left(x-1\right)}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}=0
Since \frac{x^{4}-5x^{3}+5x^{2}+5x-6}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)} and \frac{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}-5x^{3}+5x^{2}+5x-6-10x^{3}+30x^{2}-20x+30x^{2}-90x+60}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}=0
Do the multiplications in x^{4}-5x^{3}+5x^{2}+5x-6-10\left(x-3\right)\left(x-2\right)\left(x-1\right).
\frac{x^{4}-15x^{3}+65x^{2}-105x+54}{10\left(x-3\right)\left(x-2\right)\left(x-1\right)}=0
Combine like terms in x^{4}-5x^{3}+5x^{2}+5x-6-10x^{3}+30x^{2}-20x+30x^{2}-90x+60.
x^{4}-15x^{3}+65x^{2}-105x+54=0
Variable x cannot be equal to any of the values 1,2,3 since division by zero is not defined. Multiply both sides of the equation by 10\left(x-3\right)\left(x-2\right)\left(x-1\right).
±54,±27,±18,±9,±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 54 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-14x^{2}+51x-54=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-15x^{3}+65x^{2}-105x+54 by x-1 to get x^{3}-14x^{2}+51x-54. Solve the equation where the result equals to 0.
±54,±27,±18,±9,±6,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -54 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-12x+27=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-14x^{2}+51x-54 by x-2 to get x^{2}-12x+27. Solve the equation where the result equals to 0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 1\times 27}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -12 for b, and 27 for c in the quadratic formula.
x=\frac{12±6}{2}
Do the calculations.
x=3 x=9
Solve the equation x^{2}-12x+27=0 when ± is plus and when ± is minus.
x=9
Remove the values that the variable cannot be equal to.
x=1 x=2 x=3 x=9
List all found solutions.
x=9
Variable x cannot be equal to any of the values 1,2,3.