Evaluate
\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x\left(x-4\right)\left(x+3\right)}
Expand
\frac{-4x^{4}+x^{3}+32x-8}{x\left(x^{2}-x-12\right)}
Graph
Share
Copied to clipboard
\frac{\frac{1}{x}-4}{\frac{x^{2}-x-12}{x^{3}-8}}
Rewrite x^{2} as xx. Cancel out x in both numerator and denominator.
\frac{\left(\frac{1}{x}-4\right)\left(x^{3}-8\right)}{x^{2}-x-12}
Divide \frac{1}{x}-4 by \frac{x^{2}-x-12}{x^{3}-8} by multiplying \frac{1}{x}-4 by the reciprocal of \frac{x^{2}-x-12}{x^{3}-8}.
\frac{\left(\frac{1}{x}-\frac{4x}{x}\right)\left(x^{3}-8\right)}{x^{2}-x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{\frac{1-4x}{x}\left(x^{3}-8\right)}{x^{2}-x-12}
Since \frac{1}{x} and \frac{4x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x}}{x^{2}-x-12}
Express \frac{1-4x}{x}\left(x^{3}-8\right) as a single fraction.
\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x\left(x^{2}-x-12\right)}
Express \frac{\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x}}{x^{2}-x-12} as a single fraction.
\frac{x^{3}-8-4x^{4}+32x}{x\left(x^{2}-x-12\right)}
Use the distributive property to multiply 1-4x by x^{3}-8.
\frac{x^{3}-8-4x^{4}+32x}{x^{3}-x^{2}-12x}
Use the distributive property to multiply x by x^{2}-x-12.
\frac{\frac{1}{x}-4}{\frac{x^{2}-x-12}{x^{3}-8}}
Rewrite x^{2} as xx. Cancel out x in both numerator and denominator.
\frac{\left(\frac{1}{x}-4\right)\left(x^{3}-8\right)}{x^{2}-x-12}
Divide \frac{1}{x}-4 by \frac{x^{2}-x-12}{x^{3}-8} by multiplying \frac{1}{x}-4 by the reciprocal of \frac{x^{2}-x-12}{x^{3}-8}.
\frac{\left(\frac{1}{x}-\frac{4x}{x}\right)\left(x^{3}-8\right)}{x^{2}-x-12}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{x}{x}.
\frac{\frac{1-4x}{x}\left(x^{3}-8\right)}{x^{2}-x-12}
Since \frac{1}{x} and \frac{4x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x}}{x^{2}-x-12}
Express \frac{1-4x}{x}\left(x^{3}-8\right) as a single fraction.
\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x\left(x^{2}-x-12\right)}
Express \frac{\frac{\left(1-4x\right)\left(x^{3}-8\right)}{x}}{x^{2}-x-12} as a single fraction.
\frac{x^{3}-8-4x^{4}+32x}{x\left(x^{2}-x-12\right)}
Use the distributive property to multiply 1-4x by x^{3}-8.
\frac{x^{3}-8-4x^{4}+32x}{x^{3}-x^{2}-12x}
Use the distributive property to multiply x by x^{2}-x-12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}