Evaluate
x-5
Expand
x-5
Graph
Share
Copied to clipboard
\frac{\frac{xx}{5x}-\frac{5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{x}{5} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{5}{5}.
\frac{\frac{xx-5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Since \frac{xx}{5x} and \frac{5\times 5}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-25}{5x}}{\frac{1}{5}+\frac{1}{x}}
Do the multiplications in xx-5\times 5.
\frac{\frac{x^{2}-25}{5x}}{\frac{x}{5x}+\frac{5}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{1}{5} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{5}{5}.
\frac{\frac{x^{2}-25}{5x}}{\frac{x+5}{5x}}
Since \frac{x}{5x} and \frac{5}{5x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-25\right)\times 5x}{5x\left(x+5\right)}
Divide \frac{x^{2}-25}{5x} by \frac{x+5}{5x} by multiplying \frac{x^{2}-25}{5x} by the reciprocal of \frac{x+5}{5x}.
\frac{x^{2}-25}{x+5}
Cancel out 5x in both numerator and denominator.
\frac{\left(x-5\right)\left(x+5\right)}{x+5}
Factor the expressions that are not already factored.
x-5
Cancel out x+5 in both numerator and denominator.
\frac{\frac{xx}{5x}-\frac{5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{x}{5} times \frac{x}{x}. Multiply \frac{5}{x} times \frac{5}{5}.
\frac{\frac{xx-5\times 5}{5x}}{\frac{1}{5}+\frac{1}{x}}
Since \frac{xx}{5x} and \frac{5\times 5}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-25}{5x}}{\frac{1}{5}+\frac{1}{x}}
Do the multiplications in xx-5\times 5.
\frac{\frac{x^{2}-25}{5x}}{\frac{x}{5x}+\frac{5}{5x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and x is 5x. Multiply \frac{1}{5} times \frac{x}{x}. Multiply \frac{1}{x} times \frac{5}{5}.
\frac{\frac{x^{2}-25}{5x}}{\frac{x+5}{5x}}
Since \frac{x}{5x} and \frac{5}{5x} have the same denominator, add them by adding their numerators.
\frac{\left(x^{2}-25\right)\times 5x}{5x\left(x+5\right)}
Divide \frac{x^{2}-25}{5x} by \frac{x+5}{5x} by multiplying \frac{x^{2}-25}{5x} by the reciprocal of \frac{x+5}{5x}.
\frac{x^{2}-25}{x+5}
Cancel out 5x in both numerator and denominator.
\frac{\left(x-5\right)\left(x+5\right)}{x+5}
Factor the expressions that are not already factored.
x-5
Cancel out x+5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}