Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{3x}{15}+\frac{5}{15}}{\frac{x}{5}-\frac{1}{3}}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{x}{5} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{5}{5}.
\frac{\frac{3x+5}{15}}{\frac{x}{5}-\frac{1}{3}}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
Since \frac{3x}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{3x+5}{15}}{\frac{3x}{15}-\frac{5}{15}}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{x}{5} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{5}{5}.
\frac{\frac{3x+5}{15}}{\frac{3x-5}{15}}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
Since \frac{3x}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3x+5\right)\times 15}{15\left(3x-5\right)}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
Divide \frac{3x+5}{15} by \frac{3x-5}{15} by multiplying \frac{3x+5}{15} by the reciprocal of \frac{3x-5}{15}.
\frac{3x+5}{3x-5}=\frac{\frac{x}{3}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
Cancel out 15 in both numerator and denominator.
\frac{3x+5}{3x-5}=\frac{\frac{5x}{15}+\frac{1}{15}}{\frac{x}{3}-\frac{4}{5}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 15 is 15. Multiply \frac{x}{3} times \frac{5}{5}.
\frac{3x+5}{3x-5}=\frac{\frac{5x+1}{15}}{\frac{x}{3}-\frac{4}{5}}
Since \frac{5x}{15} and \frac{1}{15} have the same denominator, add them by adding their numerators.
\frac{3x+5}{3x-5}=\frac{\frac{5x+1}{15}}{\frac{5x}{15}-\frac{4\times 3}{15}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{x}{3} times \frac{5}{5}. Multiply \frac{4}{5} times \frac{3}{3}.
\frac{3x+5}{3x-5}=\frac{\frac{5x+1}{15}}{\frac{5x-4\times 3}{15}}
Since \frac{5x}{15} and \frac{4\times 3}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+5}{3x-5}=\frac{\frac{5x+1}{15}}{\frac{5x-12}{15}}
Do the multiplications in 5x-4\times 3.
\frac{3x+5}{3x-5}=\frac{\left(5x+1\right)\times 15}{15\left(5x-12\right)}
Divide \frac{5x+1}{15} by \frac{5x-12}{15} by multiplying \frac{5x+1}{15} by the reciprocal of \frac{5x-12}{15}.
\frac{3x+5}{3x-5}=\frac{5x+1}{5x-12}
Cancel out 15 in both numerator and denominator.
\frac{3x+5}{3x-5}-\frac{5x+1}{5x-12}=0
Subtract \frac{5x+1}{5x-12} from both sides.
\frac{\left(3x+5\right)\left(5x-12\right)}{\left(3x-5\right)\left(5x-12\right)}-\frac{\left(5x+1\right)\left(3x-5\right)}{\left(3x-5\right)\left(5x-12\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-5 and 5x-12 is \left(3x-5\right)\left(5x-12\right). Multiply \frac{3x+5}{3x-5} times \frac{5x-12}{5x-12}. Multiply \frac{5x+1}{5x-12} times \frac{3x-5}{3x-5}.
\frac{\left(3x+5\right)\left(5x-12\right)-\left(5x+1\right)\left(3x-5\right)}{\left(3x-5\right)\left(5x-12\right)}=0
Since \frac{\left(3x+5\right)\left(5x-12\right)}{\left(3x-5\right)\left(5x-12\right)} and \frac{\left(5x+1\right)\left(3x-5\right)}{\left(3x-5\right)\left(5x-12\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{15x^{2}-36x+25x-60-15x^{2}+25x-3x+5}{\left(3x-5\right)\left(5x-12\right)}=0
Do the multiplications in \left(3x+5\right)\left(5x-12\right)-\left(5x+1\right)\left(3x-5\right).
\frac{11x-55}{\left(3x-5\right)\left(5x-12\right)}=0
Combine like terms in 15x^{2}-36x+25x-60-15x^{2}+25x-3x+5.
11x-55=0
Variable x cannot be equal to any of the values \frac{5}{3},\frac{12}{5} since division by zero is not defined. Multiply both sides of the equation by \left(3x-5\right)\left(5x-12\right).
11x=55
Add 55 to both sides. Anything plus zero gives itself.
x=\frac{55}{11}
Divide both sides by 11.
x=5
Divide 55 by 11 to get 5.