Evaluate
x^{2}-y^{2}
Expand
x^{2}-y^{2}
Share
Copied to clipboard
\frac{\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{\left(x+y\right)\left(x+y\right)+\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+xy+xy+y^{2}+x^{2}-xy-xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Do the multiplications in \left(x+y\right)\left(x+y\right)+\left(x-y\right)\left(x-y\right).
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Combine like terms in x^{2}+xy+xy+y^{2}+x^{2}-xy-xy+y^{2}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x-y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}+\frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)^{2} and \left(x-y\right)^{2} is \left(x+y\right)^{2}\left(x-y\right)^{2}. Multiply \frac{1}{\left(x+y\right)^{2}} times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Multiply \frac{1}{\left(x-y\right)^{2}} times \frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x-y\right)^{2}+\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Since \frac{\left(x-y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} and \frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-2xy+y^{2}+x^{2}+2xy+y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Do the multiplications in \left(x-y\right)^{2}+\left(x+y\right)^{2}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Combine like terms in x^{2}-2xy+y^{2}+x^{2}+2xy+y^{2}.
\frac{\left(2x^{2}+2y^{2}\right)\left(x+y\right)^{2}\left(x-y\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(2x^{2}+2y^{2}\right)}
Divide \frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)} by \frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} by multiplying \frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}.
\left(x+y\right)\left(x-y\right)
Cancel out \left(x+y\right)\left(x-y\right)\left(2x^{2}+2y^{2}\right) in both numerator and denominator.
x^{2}-y^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{x+y}{x-y} times \frac{x+y}{x+y}. Multiply \frac{x-y}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{\left(x+y\right)\left(x+y\right)+\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Since \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+xy+xy+y^{2}+x^{2}-xy-xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Do the multiplications in \left(x+y\right)\left(x+y\right)+\left(x-y\right)\left(x-y\right).
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{1}{\left(x+y\right)^{2}}+\frac{1}{\left(x-y\right)^{2}}}
Combine like terms in x^{2}+xy+xy+y^{2}+x^{2}-xy-xy+y^{2}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x-y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}+\frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+y\right)^{2} and \left(x-y\right)^{2} is \left(x+y\right)^{2}\left(x-y\right)^{2}. Multiply \frac{1}{\left(x+y\right)^{2}} times \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Multiply \frac{1}{\left(x-y\right)^{2}} times \frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x-y\right)^{2}+\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Since \frac{\left(x-y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} and \frac{\left(x+y\right)^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-2xy+y^{2}+x^{2}+2xy+y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Do the multiplications in \left(x-y\right)^{2}+\left(x+y\right)^{2}.
\frac{\frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)}}{\frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}}
Combine like terms in x^{2}-2xy+y^{2}+x^{2}+2xy+y^{2}.
\frac{\left(2x^{2}+2y^{2}\right)\left(x+y\right)^{2}\left(x-y\right)^{2}}{\left(x+y\right)\left(x-y\right)\left(2x^{2}+2y^{2}\right)}
Divide \frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)} by \frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}} by multiplying \frac{2x^{2}+2y^{2}}{\left(x+y\right)\left(x-y\right)} by the reciprocal of \frac{2x^{2}+2y^{2}}{\left(x+y\right)^{2}\left(x-y\right)^{2}}.
\left(x+y\right)\left(x-y\right)
Cancel out \left(x+y\right)\left(x-y\right)\left(2x^{2}+2y^{2}\right) in both numerator and denominator.
x^{2}-y^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}