Evaluate
\frac{1}{\left(x-1\right)\left(x+h-1\right)}
Expand
\frac{1}{\left(x-1\right)\left(x+h-1\right)}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x+h-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+h-1\right)}-\frac{\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h-1 and x-1 is \left(x-1\right)\left(x+h-1\right). Multiply \frac{x+h-2}{x+h-1} times \frac{x-1}{x-1}. Multiply \frac{x-2}{x-1} times \frac{x+h-1}{x+h-1}.
\frac{\frac{\left(x+h-2\right)\left(x-1\right)-\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)}}{h}
Since \frac{\left(x+h-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+h-1\right)} and \frac{\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x+hx-h-2x+2-x^{2}-xh+x+2x+2h-2}{\left(x-1\right)\left(x+h-1\right)}}{h}
Do the multiplications in \left(x+h-2\right)\left(x-1\right)-\left(x-2\right)\left(x+h-1\right).
\frac{\frac{h}{\left(x-1\right)\left(x+h-1\right)}}{h}
Combine like terms in x^{2}-x+hx-h-2x+2-x^{2}-xh+x+2x+2h-2.
\frac{h}{\left(x-1\right)\left(x+h-1\right)h}
Express \frac{\frac{h}{\left(x-1\right)\left(x+h-1\right)}}{h} as a single fraction.
\frac{1}{\left(x-1\right)\left(x+h-1\right)}
Cancel out h in both numerator and denominator.
\frac{1}{x^{2}+xh-x-x-h+1}
Apply the distributive property by multiplying each term of x-1 by each term of x+h-1.
\frac{1}{x^{2}+xh-2x-h+1}
Combine -x and -x to get -2x.
\frac{\frac{\left(x+h-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+h-1\right)}-\frac{\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)}}{h}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+h-1 and x-1 is \left(x-1\right)\left(x+h-1\right). Multiply \frac{x+h-2}{x+h-1} times \frac{x-1}{x-1}. Multiply \frac{x-2}{x-1} times \frac{x+h-1}{x+h-1}.
\frac{\frac{\left(x+h-2\right)\left(x-1\right)-\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)}}{h}
Since \frac{\left(x+h-2\right)\left(x-1\right)}{\left(x-1\right)\left(x+h-1\right)} and \frac{\left(x-2\right)\left(x+h-1\right)}{\left(x-1\right)\left(x+h-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-x+hx-h-2x+2-x^{2}-xh+x+2x+2h-2}{\left(x-1\right)\left(x+h-1\right)}}{h}
Do the multiplications in \left(x+h-2\right)\left(x-1\right)-\left(x-2\right)\left(x+h-1\right).
\frac{\frac{h}{\left(x-1\right)\left(x+h-1\right)}}{h}
Combine like terms in x^{2}-x+hx-h-2x+2-x^{2}-xh+x+2x+2h-2.
\frac{h}{\left(x-1\right)\left(x+h-1\right)h}
Express \frac{\frac{h}{\left(x-1\right)\left(x+h-1\right)}}{h} as a single fraction.
\frac{1}{\left(x-1\right)\left(x+h-1\right)}
Cancel out h in both numerator and denominator.
\frac{1}{x^{2}+xh-x-x-h+1}
Apply the distributive property by multiplying each term of x-1 by each term of x+h-1.
\frac{1}{x^{2}+xh-2x-h+1}
Combine -x and -x to get -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}