Evaluate
\frac{\left(x+4\right)\left(x+9\right)}{x^{2}+3x+18}
Expand
\frac{x^{2}+13x+36}{x^{2}+3x+18}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x+6\right)\left(x+6\right)}{x\left(x+6\right)}+\frac{x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+6 is x\left(x+6\right). Multiply \frac{x+6}{x} times \frac{x+6}{x+6}. Multiply \frac{1}{x+6} times \frac{x}{x}.
\frac{\frac{\left(x+6\right)\left(x+6\right)+x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Since \frac{\left(x+6\right)\left(x+6\right)}{x\left(x+6\right)} and \frac{x}{x\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+6x+6x+36+x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Do the multiplications in \left(x+6\right)\left(x+6\right)+x.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Combine like terms in x^{2}+6x+6x+36+x.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3\left(x+6\right)}{x\left(x+6\right)}+\frac{xx}{x\left(x+6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+6 is x\left(x+6\right). Multiply \frac{3}{x} times \frac{x+6}{x+6}. Multiply \frac{x}{x+6} times \frac{x}{x}.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3\left(x+6\right)+xx}{x\left(x+6\right)}}
Since \frac{3\left(x+6\right)}{x\left(x+6\right)} and \frac{xx}{x\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3x+18+x^{2}}{x\left(x+6\right)}}
Do the multiplications in 3\left(x+6\right)+xx.
\frac{\left(x^{2}+13x+36\right)x\left(x+6\right)}{x\left(x+6\right)\left(3x+18+x^{2}\right)}
Divide \frac{x^{2}+13x+36}{x\left(x+6\right)} by \frac{3x+18+x^{2}}{x\left(x+6\right)} by multiplying \frac{x^{2}+13x+36}{x\left(x+6\right)} by the reciprocal of \frac{3x+18+x^{2}}{x\left(x+6\right)}.
\frac{x^{2}+13x+36}{x^{2}+3x+18}
Cancel out x\left(x+6\right) in both numerator and denominator.
\frac{\frac{\left(x+6\right)\left(x+6\right)}{x\left(x+6\right)}+\frac{x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+6 is x\left(x+6\right). Multiply \frac{x+6}{x} times \frac{x+6}{x+6}. Multiply \frac{1}{x+6} times \frac{x}{x}.
\frac{\frac{\left(x+6\right)\left(x+6\right)+x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Since \frac{\left(x+6\right)\left(x+6\right)}{x\left(x+6\right)} and \frac{x}{x\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+6x+6x+36+x}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Do the multiplications in \left(x+6\right)\left(x+6\right)+x.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3}{x}+\frac{x}{x+6}}
Combine like terms in x^{2}+6x+6x+36+x.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3\left(x+6\right)}{x\left(x+6\right)}+\frac{xx}{x\left(x+6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+6 is x\left(x+6\right). Multiply \frac{3}{x} times \frac{x+6}{x+6}. Multiply \frac{x}{x+6} times \frac{x}{x}.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3\left(x+6\right)+xx}{x\left(x+6\right)}}
Since \frac{3\left(x+6\right)}{x\left(x+6\right)} and \frac{xx}{x\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+13x+36}{x\left(x+6\right)}}{\frac{3x+18+x^{2}}{x\left(x+6\right)}}
Do the multiplications in 3\left(x+6\right)+xx.
\frac{\left(x^{2}+13x+36\right)x\left(x+6\right)}{x\left(x+6\right)\left(3x+18+x^{2}\right)}
Divide \frac{x^{2}+13x+36}{x\left(x+6\right)} by \frac{3x+18+x^{2}}{x\left(x+6\right)} by multiplying \frac{x^{2}+13x+36}{x\left(x+6\right)} by the reciprocal of \frac{3x+18+x^{2}}{x\left(x+6\right)}.
\frac{x^{2}+13x+36}{x^{2}+3x+18}
Cancel out x\left(x+6\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}