Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+3\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{4x}{16-x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+4 and x-4 is \left(x-4\right)\left(x+4\right). Multiply \frac{x+3}{x+4} times \frac{x-4}{x-4}. Multiply \frac{x-3}{x-4} times \frac{x+4}{x+4}.
\frac{\frac{\left(x+3\right)\left(x-4\right)-\left(x-3\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}}{\frac{4x}{16-x^{2}}}
Since \frac{\left(x+3\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-4x+3x-12-x^{2}-4x+3x+12}{\left(x-4\right)\left(x+4\right)}}{\frac{4x}{16-x^{2}}}
Do the multiplications in \left(x+3\right)\left(x-4\right)-\left(x-3\right)\left(x+4\right).
\frac{\frac{-2x}{\left(x-4\right)\left(x+4\right)}}{\frac{4x}{16-x^{2}}}
Combine like terms in x^{2}-4x+3x-12-x^{2}-4x+3x+12.
\frac{-2x\left(16-x^{2}\right)}{\left(x-4\right)\left(x+4\right)\times 4x}
Divide \frac{-2x}{\left(x-4\right)\left(x+4\right)} by \frac{4x}{16-x^{2}} by multiplying \frac{-2x}{\left(x-4\right)\left(x+4\right)} by the reciprocal of \frac{4x}{16-x^{2}}.
\frac{-\left(-x^{2}+16\right)}{2\left(x-4\right)\left(x+4\right)}
Cancel out 2x in both numerator and denominator.
\frac{-\left(x-4\right)\left(-x-4\right)}{2\left(x-4\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{-\left(-1\right)\left(x-4\right)\left(x+4\right)}{2\left(x-4\right)\left(x+4\right)}
Extract the negative sign in -4-x.
\frac{-\left(-1\right)}{2}
Cancel out \left(x-4\right)\left(x+4\right) in both numerator and denominator.
\frac{1}{2}
Multiply -1 and -1 to get 1.