Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\left(x+1\right)\left(a-1\right)}{\left(a-1\right)\left(x-1\right)}-\frac{\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and a-1 is \left(a-1\right)\left(x-1\right). Multiply \frac{x+1}{x-1} times \frac{a-1}{a-1}. Multiply \frac{a+1}{a-1} times \frac{x-1}{x-1}.
\frac{\frac{\left(x+1\right)\left(a-1\right)-\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
Since \frac{\left(x+1\right)\left(a-1\right)}{\left(a-1\right)\left(x-1\right)} and \frac{\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xa-x+a-1-ax+a-x+1}{\left(a-1\right)\left(x-1\right)}}{x-a}
Do the multiplications in \left(x+1\right)\left(a-1\right)-\left(a+1\right)\left(x-1\right).
\frac{\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)}}{x-a}
Combine like terms in xa-x+a-1-ax+a-x+1.
\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Express \frac{\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)}}{x-a} as a single fraction.
\frac{2\left(-x+a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Factor the expressions that are not already factored.
\frac{-2\left(x-a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Extract the negative sign in -x+a.
\frac{-2}{\left(a-1\right)\left(x-1\right)}
Cancel out x-a in both numerator and denominator.
\frac{-2}{ax-x-a+1}
Expand the expression.
\frac{\frac{\left(x+1\right)\left(a-1\right)}{\left(a-1\right)\left(x-1\right)}-\frac{\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and a-1 is \left(a-1\right)\left(x-1\right). Multiply \frac{x+1}{x-1} times \frac{a-1}{a-1}. Multiply \frac{a+1}{a-1} times \frac{x-1}{x-1}.
\frac{\frac{\left(x+1\right)\left(a-1\right)-\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)}}{x-a}
Since \frac{\left(x+1\right)\left(a-1\right)}{\left(a-1\right)\left(x-1\right)} and \frac{\left(a+1\right)\left(x-1\right)}{\left(a-1\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xa-x+a-1-ax+a-x+1}{\left(a-1\right)\left(x-1\right)}}{x-a}
Do the multiplications in \left(x+1\right)\left(a-1\right)-\left(a+1\right)\left(x-1\right).
\frac{\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)}}{x-a}
Combine like terms in xa-x+a-1-ax+a-x+1.
\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Express \frac{\frac{-2x+2a}{\left(a-1\right)\left(x-1\right)}}{x-a} as a single fraction.
\frac{2\left(-x+a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Factor the expressions that are not already factored.
\frac{-2\left(x-a\right)}{\left(a-1\right)\left(x-1\right)\left(x-a\right)}
Extract the negative sign in -x+a.
\frac{-2}{\left(a-1\right)\left(x-1\right)}
Cancel out x-a in both numerator and denominator.
\frac{-2}{ax-x-a+1}
Expand the expression.