\frac { \frac { s } { 100 + s } \times a } { a + 4 a } \times 100 \%
Evaluate
\frac{s}{5\left(s+100\right)}
Differentiate w.r.t. s
\frac{20}{\left(s+100\right)^{2}}
Quiz
Algebra
5 problems similar to:
\frac { \frac { s } { 100 + s } \times a } { a + 4 a } \times 100 \%
Share
Copied to clipboard
\frac{\frac{s}{100+s}a}{a+4a}\times 1
Divide 100 by 100 to get 1.
\frac{\frac{sa}{100+s}}{a+4a}\times 1
Express \frac{s}{100+s}a as a single fraction.
\frac{\frac{sa}{100+s}}{5a}\times 1
Combine a and 4a to get 5a.
\frac{sa}{\left(100+s\right)\times 5a}\times 1
Express \frac{\frac{sa}{100+s}}{5a} as a single fraction.
\frac{s}{5\left(s+100\right)}\times 1
Cancel out a in both numerator and denominator.
\frac{s}{5\left(s+100\right)}
Express \frac{s}{5\left(s+100\right)}\times 1 as a single fraction.
\frac{s}{5s+500}
Use the distributive property to multiply 5 by s+100.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{s}{100+s}a}{a+4a}\times 1)
Divide 100 by 100 to get 1.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{sa}{100+s}}{a+4a}\times 1)
Express \frac{s}{100+s}a as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{\frac{sa}{100+s}}{5a}\times 1)
Combine a and 4a to get 5a.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{sa}{\left(100+s\right)\times 5a}\times 1)
Express \frac{\frac{sa}{100+s}}{5a} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5\left(s+100\right)}\times 1)
Cancel out a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5\left(s+100\right)})
Express \frac{s}{5\left(s+100\right)}\times 1 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s}{5s+500})
Use the distributive property to multiply 5 by s+100.
\frac{\left(5s^{1}+500\right)\frac{\mathrm{d}}{\mathrm{d}s}(s^{1})-s^{1}\frac{\mathrm{d}}{\mathrm{d}s}(5s^{1}+500)}{\left(5s^{1}+500\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(5s^{1}+500\right)s^{1-1}-s^{1}\times 5s^{1-1}}{\left(5s^{1}+500\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(5s^{1}+500\right)s^{0}-s^{1}\times 5s^{0}}{\left(5s^{1}+500\right)^{2}}
Do the arithmetic.
\frac{5s^{1}s^{0}+500s^{0}-s^{1}\times 5s^{0}}{\left(5s^{1}+500\right)^{2}}
Expand using distributive property.
\frac{5s^{1}+500s^{0}-5s^{1}}{\left(5s^{1}+500\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{\left(5-5\right)s^{1}+500s^{0}}{\left(5s^{1}+500\right)^{2}}
Combine like terms.
\frac{500s^{0}}{\left(5s^{1}+500\right)^{2}}
Subtract 5 from 5.
\frac{500s^{0}}{\left(5s+500\right)^{2}}
For any term t, t^{1}=t.
\frac{500\times 1}{\left(5s+500\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{500}{\left(5s+500\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}