Evaluate
\frac{rs}{r^{2}-s^{2}}
Expand
\frac{rs}{r^{2}-s^{2}}
Share
Copied to clipboard
\frac{\frac{rr}{rs}+\frac{ss}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s and r is rs. Multiply \frac{r}{s} times \frac{r}{r}. Multiply \frac{s}{r} times \frac{s}{s}.
\frac{\frac{rr+ss}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
Since \frac{rr}{rs} and \frac{ss}{rs} have the same denominator, add them by adding their numerators.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
Do the multiplications in rr+ss.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}r^{2}}{r^{2}s^{2}}-\frac{s^{2}s^{2}}{r^{2}s^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s^{2} and r^{2} is r^{2}s^{2}. Multiply \frac{r^{2}}{s^{2}} times \frac{r^{2}}{r^{2}}. Multiply \frac{s^{2}}{r^{2}} times \frac{s^{2}}{s^{2}}.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}r^{2}-s^{2}s^{2}}{r^{2}s^{2}}}
Since \frac{r^{2}r^{2}}{r^{2}s^{2}} and \frac{s^{2}s^{2}}{r^{2}s^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{4}-s^{4}}{r^{2}s^{2}}}
Do the multiplications in r^{2}r^{2}-s^{2}s^{2}.
\frac{\left(r^{2}+s^{2}\right)r^{2}s^{2}}{rs\left(r^{4}-s^{4}\right)}
Divide \frac{r^{2}+s^{2}}{rs} by \frac{r^{4}-s^{4}}{r^{2}s^{2}} by multiplying \frac{r^{2}+s^{2}}{rs} by the reciprocal of \frac{r^{4}-s^{4}}{r^{2}s^{2}}.
\frac{rs\left(r^{2}+s^{2}\right)}{r^{4}-s^{4}}
Cancel out rs in both numerator and denominator.
\frac{rs\left(r^{2}+s^{2}\right)}{\left(r+s\right)\left(r-s\right)\left(r^{2}+s^{2}\right)}
Factor the expressions that are not already factored.
\frac{rs}{\left(r+s\right)\left(r-s\right)}
Cancel out r^{2}+s^{2} in both numerator and denominator.
\frac{rs}{r^{2}-s^{2}}
Expand the expression.
\frac{\frac{rr}{rs}+\frac{ss}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s and r is rs. Multiply \frac{r}{s} times \frac{r}{r}. Multiply \frac{s}{r} times \frac{s}{s}.
\frac{\frac{rr+ss}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
Since \frac{rr}{rs} and \frac{ss}{rs} have the same denominator, add them by adding their numerators.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}}{s^{2}}-\frac{s^{2}}{r^{2}}}
Do the multiplications in rr+ss.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}r^{2}}{r^{2}s^{2}}-\frac{s^{2}s^{2}}{r^{2}s^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of s^{2} and r^{2} is r^{2}s^{2}. Multiply \frac{r^{2}}{s^{2}} times \frac{r^{2}}{r^{2}}. Multiply \frac{s^{2}}{r^{2}} times \frac{s^{2}}{s^{2}}.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{2}r^{2}-s^{2}s^{2}}{r^{2}s^{2}}}
Since \frac{r^{2}r^{2}}{r^{2}s^{2}} and \frac{s^{2}s^{2}}{r^{2}s^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}+s^{2}}{rs}}{\frac{r^{4}-s^{4}}{r^{2}s^{2}}}
Do the multiplications in r^{2}r^{2}-s^{2}s^{2}.
\frac{\left(r^{2}+s^{2}\right)r^{2}s^{2}}{rs\left(r^{4}-s^{4}\right)}
Divide \frac{r^{2}+s^{2}}{rs} by \frac{r^{4}-s^{4}}{r^{2}s^{2}} by multiplying \frac{r^{2}+s^{2}}{rs} by the reciprocal of \frac{r^{4}-s^{4}}{r^{2}s^{2}}.
\frac{rs\left(r^{2}+s^{2}\right)}{r^{4}-s^{4}}
Cancel out rs in both numerator and denominator.
\frac{rs\left(r^{2}+s^{2}\right)}{\left(r+s\right)\left(r-s\right)\left(r^{2}+s^{2}\right)}
Factor the expressions that are not already factored.
\frac{rs}{\left(r+s\right)\left(r-s\right)}
Cancel out r^{2}+s^{2} in both numerator and denominator.
\frac{rs}{r^{2}-s^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}