Evaluate
\frac{4\left(r^{2}-9\right)}{3\left(r^{2}-16\right)}
Expand
\frac{4\left(r^{2}-9\right)}{3\left(r^{2}-16\right)}
Share
Copied to clipboard
\frac{\frac{rr}{3r}-\frac{3\times 3}{3r}}{\frac{r}{4}-\frac{4}{r}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and r is 3r. Multiply \frac{r}{3} times \frac{r}{r}. Multiply \frac{3}{r} times \frac{3}{3}.
\frac{\frac{rr-3\times 3}{3r}}{\frac{r}{4}-\frac{4}{r}}
Since \frac{rr}{3r} and \frac{3\times 3}{3r} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}-9}{3r}}{\frac{r}{4}-\frac{4}{r}}
Do the multiplications in rr-3\times 3.
\frac{\frac{r^{2}-9}{3r}}{\frac{rr}{4r}-\frac{4\times 4}{4r}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and r is 4r. Multiply \frac{r}{4} times \frac{r}{r}. Multiply \frac{4}{r} times \frac{4}{4}.
\frac{\frac{r^{2}-9}{3r}}{\frac{rr-4\times 4}{4r}}
Since \frac{rr}{4r} and \frac{4\times 4}{4r} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}-9}{3r}}{\frac{r^{2}-16}{4r}}
Do the multiplications in rr-4\times 4.
\frac{\left(r^{2}-9\right)\times 4r}{3r\left(r^{2}-16\right)}
Divide \frac{r^{2}-9}{3r} by \frac{r^{2}-16}{4r} by multiplying \frac{r^{2}-9}{3r} by the reciprocal of \frac{r^{2}-16}{4r}.
\frac{4\left(r^{2}-9\right)}{3\left(r^{2}-16\right)}
Cancel out r in both numerator and denominator.
\frac{4r^{2}-36}{3\left(r^{2}-16\right)}
Use the distributive property to multiply 4 by r^{2}-9.
\frac{4r^{2}-36}{3r^{2}-48}
Use the distributive property to multiply 3 by r^{2}-16.
\frac{\frac{rr}{3r}-\frac{3\times 3}{3r}}{\frac{r}{4}-\frac{4}{r}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and r is 3r. Multiply \frac{r}{3} times \frac{r}{r}. Multiply \frac{3}{r} times \frac{3}{3}.
\frac{\frac{rr-3\times 3}{3r}}{\frac{r}{4}-\frac{4}{r}}
Since \frac{rr}{3r} and \frac{3\times 3}{3r} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}-9}{3r}}{\frac{r}{4}-\frac{4}{r}}
Do the multiplications in rr-3\times 3.
\frac{\frac{r^{2}-9}{3r}}{\frac{rr}{4r}-\frac{4\times 4}{4r}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and r is 4r. Multiply \frac{r}{4} times \frac{r}{r}. Multiply \frac{4}{r} times \frac{4}{4}.
\frac{\frac{r^{2}-9}{3r}}{\frac{rr-4\times 4}{4r}}
Since \frac{rr}{4r} and \frac{4\times 4}{4r} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{r^{2}-9}{3r}}{\frac{r^{2}-16}{4r}}
Do the multiplications in rr-4\times 4.
\frac{\left(r^{2}-9\right)\times 4r}{3r\left(r^{2}-16\right)}
Divide \frac{r^{2}-9}{3r} by \frac{r^{2}-16}{4r} by multiplying \frac{r^{2}-9}{3r} by the reciprocal of \frac{r^{2}-16}{4r}.
\frac{4\left(r^{2}-9\right)}{3\left(r^{2}-16\right)}
Cancel out r in both numerator and denominator.
\frac{4r^{2}-36}{3\left(r^{2}-16\right)}
Use the distributive property to multiply 4 by r^{2}-9.
\frac{4r^{2}-36}{3r^{2}-48}
Use the distributive property to multiply 3 by r^{2}-16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}