Evaluate
n-7
Expand
n-7
Share
Copied to clipboard
\frac{\frac{nn}{7n}-\frac{7\times 7}{7n}}{\frac{1}{7}+\frac{1}{n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and n is 7n. Multiply \frac{n}{7} times \frac{n}{n}. Multiply \frac{7}{n} times \frac{7}{7}.
\frac{\frac{nn-7\times 7}{7n}}{\frac{1}{7}+\frac{1}{n}}
Since \frac{nn}{7n} and \frac{7\times 7}{7n} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{n^{2}-49}{7n}}{\frac{1}{7}+\frac{1}{n}}
Do the multiplications in nn-7\times 7.
\frac{\frac{n^{2}-49}{7n}}{\frac{n}{7n}+\frac{7}{7n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and n is 7n. Multiply \frac{1}{7} times \frac{n}{n}. Multiply \frac{1}{n} times \frac{7}{7}.
\frac{\frac{n^{2}-49}{7n}}{\frac{n+7}{7n}}
Since \frac{n}{7n} and \frac{7}{7n} have the same denominator, add them by adding their numerators.
\frac{\left(n^{2}-49\right)\times 7n}{7n\left(n+7\right)}
Divide \frac{n^{2}-49}{7n} by \frac{n+7}{7n} by multiplying \frac{n^{2}-49}{7n} by the reciprocal of \frac{n+7}{7n}.
\frac{n^{2}-49}{n+7}
Cancel out 7n in both numerator and denominator.
\frac{\left(n-7\right)\left(n+7\right)}{n+7}
Factor the expressions that are not already factored.
n-7
Cancel out n+7 in both numerator and denominator.
\frac{\frac{nn}{7n}-\frac{7\times 7}{7n}}{\frac{1}{7}+\frac{1}{n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and n is 7n. Multiply \frac{n}{7} times \frac{n}{n}. Multiply \frac{7}{n} times \frac{7}{7}.
\frac{\frac{nn-7\times 7}{7n}}{\frac{1}{7}+\frac{1}{n}}
Since \frac{nn}{7n} and \frac{7\times 7}{7n} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{n^{2}-49}{7n}}{\frac{1}{7}+\frac{1}{n}}
Do the multiplications in nn-7\times 7.
\frac{\frac{n^{2}-49}{7n}}{\frac{n}{7n}+\frac{7}{7n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and n is 7n. Multiply \frac{1}{7} times \frac{n}{n}. Multiply \frac{1}{n} times \frac{7}{7}.
\frac{\frac{n^{2}-49}{7n}}{\frac{n+7}{7n}}
Since \frac{n}{7n} and \frac{7}{7n} have the same denominator, add them by adding their numerators.
\frac{\left(n^{2}-49\right)\times 7n}{7n\left(n+7\right)}
Divide \frac{n^{2}-49}{7n} by \frac{n+7}{7n} by multiplying \frac{n^{2}-49}{7n} by the reciprocal of \frac{n+7}{7n}.
\frac{n^{2}-49}{n+7}
Cancel out 7n in both numerator and denominator.
\frac{\left(n-7\right)\left(n+7\right)}{n+7}
Factor the expressions that are not already factored.
n-7
Cancel out n+7 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}