Evaluate
-100+\frac{500}{\delta }
Expand
-100+\frac{500}{\delta }
Share
Copied to clipboard
\frac{\frac{5k}{5\delta }-\frac{k\delta }{5\delta }}{\frac{k}{5}}\times 100
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \delta and 5 is 5\delta . Multiply \frac{k}{\delta } times \frac{5}{5}. Multiply \frac{k}{5} times \frac{\delta }{\delta }.
\frac{\frac{5k-k\delta }{5\delta }}{\frac{k}{5}}\times 100
Since \frac{5k}{5\delta } and \frac{k\delta }{5\delta } have the same denominator, subtract them by subtracting their numerators.
\frac{\left(5k-k\delta \right)\times 5}{5\delta k}\times 100
Divide \frac{5k-k\delta }{5\delta } by \frac{k}{5} by multiplying \frac{5k-k\delta }{5\delta } by the reciprocal of \frac{k}{5}.
\frac{-k\delta +5k}{k\delta }\times 100
Cancel out 5 in both numerator and denominator.
\frac{k\left(-\delta +5\right)}{k\delta }\times 100
Factor the expressions that are not already factored in \frac{-k\delta +5k}{k\delta }.
\frac{-\delta +5}{\delta }\times 100
Cancel out k in both numerator and denominator.
\frac{\left(-\delta +5\right)\times 100}{\delta }
Express \frac{-\delta +5}{\delta }\times 100 as a single fraction.
\frac{-100\delta +500}{\delta }
Use the distributive property to multiply -\delta +5 by 100.
\frac{\frac{5k}{5\delta }-\frac{k\delta }{5\delta }}{\frac{k}{5}}\times 100
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \delta and 5 is 5\delta . Multiply \frac{k}{\delta } times \frac{5}{5}. Multiply \frac{k}{5} times \frac{\delta }{\delta }.
\frac{\frac{5k-k\delta }{5\delta }}{\frac{k}{5}}\times 100
Since \frac{5k}{5\delta } and \frac{k\delta }{5\delta } have the same denominator, subtract them by subtracting their numerators.
\frac{\left(5k-k\delta \right)\times 5}{5\delta k}\times 100
Divide \frac{5k-k\delta }{5\delta } by \frac{k}{5} by multiplying \frac{5k-k\delta }{5\delta } by the reciprocal of \frac{k}{5}.
\frac{-k\delta +5k}{k\delta }\times 100
Cancel out 5 in both numerator and denominator.
\frac{k\left(-\delta +5\right)}{k\delta }\times 100
Factor the expressions that are not already factored in \frac{-k\delta +5k}{k\delta }.
\frac{-\delta +5}{\delta }\times 100
Cancel out k in both numerator and denominator.
\frac{\left(-\delta +5\right)\times 100}{\delta }
Express \frac{-\delta +5}{\delta }\times 100 as a single fraction.
\frac{-100\delta +500}{\delta }
Use the distributive property to multiply -\delta +5 by 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}